Physical Deposition Techniques

2018 ◽  
pp. A5.0:1-A5.0:1
Author(s):  
Glocker David A ◽  
S Ismat Shah
Author(s):  
Alistair F. Holdsworth

The noble metals palladium and silver find use in many high performance applications, and their alloys (PdAg), known for more than sixty years, are industrially important, finding use in many fields including hydrogen purification and separation, numerous facets of catalysis, and in fuel cells. In recent years, interest in these materials has grown significantly, particularly in energy generating applications and due to their performance as solid-state chemical sensors for a range of small molecules. PdAg thin films can be prepared using traditional physical methods such as cold rolling, or more modern and controllable chemical or physical deposition techniques such as electrodeposition or chemical vapour deposition. Despite the wide-reaching uses of PdAg, several recent advancements in materials preparation, such as additive manufacturing, better known as 3-D printing, remain unexplored for this material due to the differing chemistries of the two elements. In this review, we explore the manufacturing methods commonly employed for the preparation of PdAg thin films, the common and niche applications of these materials, and opportunities for the future development of these two aspects, with an emphasis on how preparation of thin films can utilise additive manufacturing approaches.


1992 ◽  
Vol 282 ◽  
Author(s):  
Christopher J. Smart ◽  
Scott K. Reynolds ◽  
Carol L. Stanis ◽  
Arvind Patil ◽  
J. Thor Kirleis

ABSTRACTChemical vapor deposition of metals is becoming a desirable alternative to physical deposition techniques (e.g. sputtering, evaporation) for applications in chip wiring. This is due to the possibility of achieving highly conformal coverage and low processing temperatures. Additionally, it is convenient to be able to enhance the physical properties (e.g. corrosion resistance, adhesion, electromigration resistance) of metal films used for chip interconnection by incorporation of an alloying agent. We have investigated the possibility of extending our current copper deposition process to allow for the deposition of copper alloys. By careful selection of the precursors and reactor conditions, simultaneous decomposition of the two compounds to give clean alloy films is effected. Using this co-deposition method, Cu-Co and Cu-Te alloy films were prepared. Precursor and reaction chemistry are discussed as well as some properties of the resulting films.


Author(s):  
N. J. Tighe ◽  
J. Sun ◽  
R.-M. Hu

Particles of BN,and C are added in amounts of 1 to 40% to SiC and Si3N4 ceramics in order to improve their mechanical properties. The ceramics are then processed by sintering, hot-pressing and chemical vapor deposition techniques to produce dense products. Crack deflection at the particles can increase toughness. However the high temperature strength and toughness are determined byphase interactions in the environmental conditions used for testing. Examination of the ceramics by transmission electron microscopy has shown that the carbon and boron nitride particles have a fibrous texture. In the sintered aSiC ceramic the carbon appears as graphite fiber bundles in the triple junctions and as compact graphite particles within some grains. Examples of these inclusions are shown in Fig. 1A and B.


Author(s):  
Klaus-Ruediger Peters

Topographic ultra high resolution can now routinely be established on bulk samples in cold field emission scanning electron microscopy with a second generation of microscopes (FSEM) designed to provide 0.5 nm probe diameters. If such small probes are used for high magnification imaging, topographic contrast is so high that remarkably fine details can be imaged on 2DMSO/osmium-impregnated specimens at ribosome surfaces even without a metal coating. On TCH/osmium-impregnated specimens topographic resolution can be increased further if the SE-I imaging mode is applied. This requires that beam diameter and metal coating thickness be made smaller than the SE range of ~1 nm and background signal contributions be reduced. Subnanometer small probes can be obtained (only) at high accelerating voltages. Subnanometer thin continuous metal films can be produced under the following conditions: self-shadowing effect between metal atoms must be reduced through appropriate deposition techniques and surface mobility of metal atoms must be diminished through high energy sputtering and/or specimen cooling.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2931
Author(s):  
Soumya Banerjee ◽  
Ek Adhikari ◽  
Pitambar Sapkota ◽  
Amal Sebastian ◽  
Sylwia Ptasinska

Atmospheric pressure plasma (APP) deposition techniques are useful today because of their simplicity and their time and cost savings, particularly for growth of oxide films. Among the oxide materials, titanium dioxide (TiO2) has a wide range of applications in electronics, solar cells, and photocatalysis, which has made it an extremely popular research topic for decades. Here, we provide an overview of non-thermal APP deposition techniques for TiO2 thin film, some historical background, and some very recent findings and developments. First, we define non-thermal plasma, and then we describe the advantages of APP deposition. In addition, we explain the importance of TiO2 and then describe briefly the three deposition techniques used to date. We also compare the structural, electronic, and optical properties of TiO2 films deposited by different APP methods. Lastly, we examine the status of current research related to the effects of such deposition parameters as plasma power, feed gas, bias voltage, gas flow rate, and substrate temperature on the deposition rate, crystal phase, and other film properties. The examples given cover the most common APP deposition techniques for TiO2 growth to understand their advantages for specific applications. In addition, we discuss the important challenges that APP deposition is facing in this rapidly growing field.


2006 ◽  
Vol 913 ◽  
Author(s):  
Young Way Teh ◽  
John Sudijono ◽  
Alok Jain ◽  
Shankar Venkataraman ◽  
Sunder Thirupapuliyur ◽  
...  

AbstractThis work focuses on the development and physical characteristics of a novel dielectric film for a pre-metal dielectric (PMD) application which induces a significant degree of tensile stress in the channel of a sub-65nm node CMOS structure. The film can be deposited at low temperatures to meet the requirements of NiSi integration while maintaining void-free gap fill and superior film quality such as moisture content and uniformity. A manufacturable and highly reliable oxide film has been demonstrated through both TCAD simulation and real device data, showing ~6% NMOS Ion-Ioff improvement; no Ion-Ioff improvement or degradation on PMOS. A new concept has been proposed to explain the PMD strain effect on device performance improvement. Improvement in Hot Carrier immunity is observed compared to similar existing technologies using high density plasma (HDP) deposition techniques.


2021 ◽  
Vol 230 ◽  
pp. 111223
Author(s):  
Mamta ◽  
Yogesh Singh ◽  
K.K. Maurya ◽  
V.N. Singh

Sign in / Sign up

Export Citation Format

Share Document