Development and Characterization of a Living-Cell Bioluminescent Bioreporter Integrated Circuit

2016 ◽  
pp. 139-162
Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


Author(s):  
Amy Poe ◽  
Steve Brockett ◽  
Tony Rubalcava

Abstract The intent of this work is to demonstrate the importance of charged device model (CDM) ESD testing and characterization by presenting a case study of a situation in which CDM testing proved invaluable in establishing the reliability of a GaAs radio frequency integrated circuit (RFIC). The problem originated when a sample of passing devices was retested to the final production test. Nine of the 200 sampled devices failed the retest, thus placing the reliability of all of the devices in question. The subsequent failure analysis indicated that the devices failed due to a short on one of two capacitors, bringing into question the reliability of the dielectric. Previous ESD characterization of the part had shown that a certain resistor was likely to fail at thresholds well below the level at which any capacitors were damaged. This paper will discuss the failure analysis techniques which were used and the testing performed to verify the failures were actually due to ESD, and not caused by weak capacitors.


Author(s):  
Nicholas Randall ◽  
Rahul Premachandran Nair

Abstract With the growing complexity of integrated circuits (IC) comes the issue of quality control during the manufacturing process. In order to avoid late realization of design flaws which could be very expensive, the characterization of the mechanical properties of the IC components needs to be carried out in a more efficient and standardized manner. The effects of changes in the manufacturing process and materials used on the functioning and reliability of the final device also need to be addressed. Initial work on accurately determining several key mechanical properties of bonding pads, solder bumps and coatings using a combination of different methods and equipment has been summarized.


1999 ◽  
Vol 5 (S2) ◽  
pp. 770-771
Author(s):  
Manabu Ishimaru ◽  
Robert M. Dickerson ◽  
Kurt E. Sickafus

As the size of Si integrated circuit structures is continually reduced, interest in semiconductor-oninsulator (SOI) structures has heightened. SOI structures have already been developed for Si using oxygen ion implantation. However, the application of Si devices is limited due to the physical properties of Si. As an alternative to Si, SiC is a potentially important semiconductor for high-power, high-speed, and high-temperature electronic devices. Therefore, this material is a candidate for expanding the capabilities of Si-based technology. In this study, we performed oxygen ion implantation into bulk SiC to produce SiC-on-insulator structures. We examined the microstructures and compositional distributions in implanted specimens using transmission electron microscopy and a scanning transmission electron microscope equipped with an energy-dispersive X-ray spectrometer (STEM-EDX).Figures 1(a) and 2(a) show bright-field images of 6H-SiC implanted with 180 keV oxygen ions at 650 °C to fluences of 7xl017 and 1.4xl018 cm−2, respectively. Three regions with distinct image contrast are apparent in Figs. 1(a) and 2(a), as indicated by A, B, and C.


Author(s):  
Chun-Hyung Cho ◽  
Richard C. Jaeger ◽  
Jeffrey C. Suhling

Stress sensing test chips are widely utilized to investigate integrated circuit die stresses arising from assembly and packaging operations. The test chips incorporate resistor or transistor sensing elements that are able to measure stresses by observing the changes in their resistivity or carrier mobility. This piezoresistive behavior of such sensors is characterized by three piezoresistive coefficients, which are electro-mechanical material constants. We are interested in stress characterization over a very broad range of temperatures. However, the literature provides limited data over the desired range, and even the data at room temperature, exhibit wide discrepancies in magnitude as well as sign. This work focuses on an extensive experimental study of the temperature dependence of the piezoresistive coefficients, π11, π12, and π44, for both p- and n-type silicon. In order to minimize errors associated with misalignment with the crystallographic axes on (100) silicon wafers, anisotropic wet etching was used in this work to accurately locate the axes. A special four-point bending apparatus has been constructed and integrated into an environmental chamber capable of temperatures from −155 to +300°C. Experimental calibration results for the piezoresistive coefficients as a function of temperature from −150°C to +125°C are presented and compared and contrasted with existing values from literature. Measurements were performed using stress sensors fabricated on (100) silicon mounted on PCB material including both die-on-beam and strip-on-beam mounting techniques. Four-point bending (4PB) was used to generate the required stress, and finite element simulations have been used to determine the actual states of stress in the silicon material.


1998 ◽  
Author(s):  
H. Ronald Marlin ◽  
Richard L. Bates ◽  
Dennis M. Ingle ◽  
Daniel W. King
Keyword(s):  

2006 ◽  
Vol 14 (1) ◽  
pp. 8-13
Author(s):  
Terence Lundy

Many believe that microfluidics has the potential to do for chemistry and biology what the integrated circuit has done for electronics — integrating tremendously complex chemical and biological processes into simple easy-to-use devices that will eventually pervade our lives. While microfluidics has made great progress in the last decade — addressing many of the fundamental questions related to manipulating nanoliter volumes of chemicals and solutions — it still faces some very basic challenges as it moves out of the laboratory and into use. Perhaps most basic is the need for fast, accurate characterization of the size and shape of the microfluidic devices themselves. Conventional imaging and measurement techniques have proven adequate for initial development, but are unable to provide the speed and accuracy needed to support the continued development of microfluidic technologies.


1999 ◽  
Vol 22 (3) ◽  
pp. 337-342 ◽  
Author(s):  
C.C. Green ◽  
J.M. Seligman ◽  
J.L. Prince ◽  
K.L. Virga

Sign in / Sign up

Export Citation Format

Share Document