scholarly journals Enhanced Antibacterial Effect of Ceftriaxone Sodium-Loaded Chitosan Nanoparticles Against Intracellular Salmonella typhimurium

2012 ◽  
Vol 13 (2) ◽  
pp. 411-421 ◽  
Author(s):  
Noha M. Zaki ◽  
Mohamed M. Hafez
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Sedighe Sadat Hashemi kamangar ◽  
Houtan Zareian ◽  
Abbas Bahador ◽  
Maryam Pourhajibagher ◽  
Zahra Bashareh ◽  
...  

Objectives. The present study evaluated the antimicrobial effects of fissure sealants containing chitosan nanoparticles. Materials and Methods. Antibacterial effect of Master Dent fissure sealant alone and after incorporating chitosan nanoparticles was evaluated on Streptococcus mutans, sanguis, and Lactobacillus acidophilus. Biofilm growth was evaluated by determining colony counts. Antimicrobial effect was determined on days 3, 15, and 30 by counting microbial colonies using eluted components test. One-way ANOVA, Tukey HSD tests, t test, and two-way ANOVA were used for statistical analyses (α = 0.05). Results. Biofilm inhibition test showed that fissure sealant containing 1 wt.% chitosan decreased colony counts significantly ( P < 0.05 ). Eluted components test with S. mutans and sanguis showed significant decrease in colony counts during the first 15 days in chitosan containing group; however, from day 30, antimicrobial activity decreased noticeably, with no significant difference from control group ( P > 0.05 ). Antimicrobial activity against L. acidophilus was maintained in chitosan group up to 30 days, and decrease in colony counts was significant ( P < 0.05 ). Conclusion. According to the results of this study, incorporation of 1 wt.% chitosan into fissure sealant induced an antimicrobial activity. Antibacterial effect on L. acidophilus persisted for longer time (30 days) compared to the two other bacterial species (15 days).


Bio-Research ◽  
2020 ◽  
Vol 18 (2) ◽  
Author(s):  
EB Onuigbo ◽  
C Anozie-Ikeanyi ◽  
NE Edeh ◽  
CO Eze ◽  
TH Gugu

The study seeks to evaluate nanoparticles based on chitosan for enhanced delivery of ampicillin in plasmid-mediated drug resistance. Serial dilutions of a mixed population of E. coli was plated on nutrient agar and streaked on Replica-plate 25 random colonies using MacConkey agar with or without ampicillin (100 µg/ml) daily for 96 h. Nanoparticles were prepared by cross-linking chitosan with sodium tripolyphosphate with ampicillin trihydrate adsorbed. Three different batches were prepared for optimization. The nanoparticles were optimized based on encapsulation efficiency, in vitro drug release, pH stability and microbiological assay using two laboratory strains of E. coli. Increased resistance to ampicillin due to possible plasmid transfer was established in vitro after 96 h. The encapsulation efficiency of the three batches was between 21-57 %. The drug release showed a burst effect and slow extended release over 8 h and reached a peak of about 19 % release at the 6 and 7 h in Batch A, B and C. The pH of the particles was stable over a period of 6 d. The nanoparticles containing only 0.075 mg of ampicillin dropped in an agar well plate inoculated with 1 ml of E. coli J62 lac pro trp hispFlac::Tn3 (AmpR) gave an IZD of ≥ 25 mm. Chitosan nanoparticles holds good potentials in potentiating the antibacterial effect of ampicillin against possible plasmid-mediated drug resistance


Food Control ◽  
2018 ◽  
Vol 86 ◽  
pp. 294-301 ◽  
Author(s):  
Pathompong Paomephan ◽  
Apinya Assavanig ◽  
Soraya Chaturongakul ◽  
Nathaniel C. Cady ◽  
Magnus Bergkvist ◽  
...  

2017 ◽  
Vol 9 (6) ◽  
pp. 10 ◽  
Author(s):  
P. Manimekalai ◽  
R. Dhanalakshmi ◽  
R. Manavalan

Objective: The objective of this study was to prepare ceftriaxone sodium chitosan nanoparticles (CS-NP) from different drug and polymer ratios and analyze their physicochemical characteristics.Methods: Ceftriaxone sodium loaded chitosan nanoparticles were prepared using chitosan as a polymer and tri sodium polyphosphate (TPP) as cross linking agent by ionic cross linking and coacervation with the aid of sonication. Various trials have been carried out for the confirmation of nanoformulation. Parameters such as the zeta potential, polydispersity, particle size, entrapment efficiency, in vitro drug release Thermo gravimetric analysis and scanning electron microscope of the nanoparticles were assessed for confirmation of nanoformulation.Results: The formulated nanoparticles showed mean particle size, polydispersity index and zeta potential to be 183.1±8.42 nm, 0.212±0.05, +38.5±1.6 mV respectively and the drug loading was found to be 46.42±10 %. In vitro drug release was showed a biphasic release pattern with initial burst release followed by sustained release of formulated nanoparticles. The cumulative percentage of drug release was about 83.08 %.Conclusion: Formulation F2 was found to be the best formulation with a higher cumulative percentage of drug release. Modified ionic gelation method can be utilized for the development of chitosan nanoparticles of ceftriaxone sodium. Polymer and crosslinking agent concentrations and sonication time are rate-limiting factors for the development of the optimized formulation. The chitosan nanoparticles developed would be capable of sustained delivery of ceftriaxone sodium.


Sign in / Sign up

Export Citation Format

Share Document