scholarly journals Evaluation of Antibacterial Effects of Fissure Sealants Containing Chitosan Nanoparticles

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Sedighe Sadat Hashemi kamangar ◽  
Houtan Zareian ◽  
Abbas Bahador ◽  
Maryam Pourhajibagher ◽  
Zahra Bashareh ◽  
...  

Objectives. The present study evaluated the antimicrobial effects of fissure sealants containing chitosan nanoparticles. Materials and Methods. Antibacterial effect of Master Dent fissure sealant alone and after incorporating chitosan nanoparticles was evaluated on Streptococcus mutans, sanguis, and Lactobacillus acidophilus. Biofilm growth was evaluated by determining colony counts. Antimicrobial effect was determined on days 3, 15, and 30 by counting microbial colonies using eluted components test. One-way ANOVA, Tukey HSD tests, t test, and two-way ANOVA were used for statistical analyses (α = 0.05). Results. Biofilm inhibition test showed that fissure sealant containing 1 wt.% chitosan decreased colony counts significantly ( P < 0.05 ). Eluted components test with S. mutans and sanguis showed significant decrease in colony counts during the first 15 days in chitosan containing group; however, from day 30, antimicrobial activity decreased noticeably, with no significant difference from control group ( P > 0.05 ). Antimicrobial activity against L. acidophilus was maintained in chitosan group up to 30 days, and decrease in colony counts was significant ( P < 0.05 ). Conclusion. According to the results of this study, incorporation of 1 wt.% chitosan into fissure sealant induced an antimicrobial activity. Antibacterial effect on L. acidophilus persisted for longer time (30 days) compared to the two other bacterial species (15 days).

2021 ◽  
Vol 54 (2) ◽  
pp. 63
Author(s):  
Hansen Kurniawan ◽  
W. Widyastuti ◽  
Mery Esterlita Hutapea

Background: Periodontitis is an inflammatory disease that occurs in periodontal tissues. Porphyromonas gingivalis is also known as a bacterium commonly associated with the pathogenesis of periodontitis. Tetracycline is one of the antibiotics often used in periodontal tissue treatment. Propolis and Moringa oleifera are also known to have certain compounds assumed to be able to inhibit biofilm growth. Purpose: This study aims to understand the effectiveness of the combination of Moringa oleifera and propolis on porphyomonas gingivalis biofilms compared to 0.7% tetracycline. Methods: A biofilm inhibition activity test was performed using the broth micro dilution method. First, bacteria were prepared by making a suspension in brain heart infusion media and adjusting it to 0.5 McFarland I standard. Second, fifteen samples were divided into five groups; group K as control group (0.1% sodium carboxymethyl cellulose), T (0.7% tetracycline), and treatment groups with the combination of propolis and Moringa oleifera in various concentrations, such as P1(10%+20%), P2(10%+40%), and P3(10%+80%). Third, the result data obtained in the form of optical density (OD) was read by using an ELISA reader. Next, statistical analysis using analysis of the variance test was conducted (p<0.05. Results: There was no significant difference between group T and group P1 (0.075). Nevertheless, there were significant differences between group T and group P2 as well as between group T and group P3 (0.00) (p=< 0.05). Conclusion: The combination of 10% propolis and 40% Moringa oleifera as well as the combination of 10% propolis and 80% Moringa oleifera have better antibacterial effectiveness against Porphyromonas gingivalis biofilm than 0.7% tetracycline.


2004 ◽  
Vol 12 (3) ◽  
pp. 200-204 ◽  
Author(s):  
Gisele Maria Correr ◽  
Angela S. Caldo-Teixeira ◽  
Roberta Caroline Bruschi Alonso ◽  
Regina Maria Puppin-Rontani ◽  
Mário Alexandre Coelho Sinhoreti ◽  
...  

The aim of this study was to evaluate the effect of saliva contamination (SCT) and re-etching time (RET) on the shear bond strength (SBS) of the Fluroshield sealant. Forty-five extracted third molars were sectioned and flattened until reach an enamel surface area. Then, all samples were etched for 30 sec with 35% phosphoric acid and then they were distributed into 9 groups (n=10) according to SCT and RET (seconds), respectively: G1- control (no SCT and no RET); G2- 30s and 0s; G3- 60s and 0s; G4-30s and 2s; G5- 30s and 5s; G6- 30s and 15s; G7-60s and 2s; G8- 60s and 5s; G9- 60s and 15s. The sealant was applied according to the manufacturer's instructions. The samples were stored in distilled water at 37ºC for 72h and subjected to the SBS test. The results indicated that there was no statistically significant difference between the groups (p>0.05). However, it could be noticed that: 1- the longer the SCT, the lower the SBS values; 2 - the longer the RET, the higher the SBS values. It could be concluded that there was a tendency to the shortest SCT (30s) associated to the longest RET (5 and 15s) to reach similar SBS values for the control group.


2020 ◽  
Vol 10 (2) ◽  
pp. 48
Author(s):  
Sri Kunarti ◽  
Aulia Ramadhani ◽  
Laskmiari Setyowati

Background: Dental caries is one of the most common infectious diseases and often occurs in the community caused by bacteria. Attached bacteria in the tooth surface for a long time will form a biofilm and will lead to demineralization characterized by damage in the structure of the tooth enamel. The bacteria that cause dental caries and can form biofilms is Streptococcus mutans. The bacteria inside biofilms are more resistant to antibacterial agents. Flavonoids in mangosteen pericarp extract can be a cleaner alternative for the anti-biofilm cavity that has properties against Streptococcus mutans. Purpose: To determine the activity of flavonoids in mangosteen pericarp extract at a certain concentration against Streptococcus mutans bacteria. Methods: This study was a laboratory experimental study with a post-test only control group design. Streptococcus mutans were diluted according to the Mc Farland dilution standard 106 in Tryptic Soy Broth (TSB) medium and put in a flexible U-bottom microtiter plate. Then it was incubated for 5x24 hours and checked using crystal violet simple staining to see the formation of biofilms. Flavonoid extract of mangosteen pericarp performed serial dilution in a concentration of 100%, 50%, 25%, 12.5%, 6.25%, 3.125%, 1.56%, and 0.78% was added, and the incubation process were conducted for 1x24 hours. OD (Optical Density) readings were done with a wavelength of 595 nm. Results: There was a significant difference between the test groups and the positive control group. The concentration of 100% had the anti-biofilm activity and showed the value of the highest percentage of inhibition, whilst the concentration of 0.78% showed a minimum biofilm inhibition concentration. The results were demonstrated by a statistical analysis test. Conclusion: Flavonoid extract of mangosteen pericarp at a certain concentration has anti-biofilm activity against Streptococcus mutans biofilm.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10846
Author(s):  
Wenyi Zhang ◽  
Yang Meng ◽  
Jin Jing ◽  
Yingtao Wu ◽  
Shu Li

Objective To investigate the effects of periodontal treatment on the abundance and diversity of blood microbiota. Methods and Materials Twenty-seven periodontitis patients were randomly allocated to a control group (A) and two test groups (B1 and B2). Group A patients received full-mouth scaling and root planing (SRP), group B1 patients received subgingival glycine air polishing (GAP) right after SRP, and group B2 patients received subgingival glycine air polishing right before SRP. Peripheral blood samples were obtained at the baseline, the day after periodontal treatment, and 6 weeks after treatment and evaluated using nested polymerase chain reaction and 16SrRNA Gene Sequencing (Miseq platform). Results All participants exhibited significant improvements in the clinical parameters evaluated at the 6-week follow-up visit compared to the values at the baseline, but no significant differences were observed between the three groups. The total bacterial count was lowest in group B2. The bacterial species diversity (α-diversity) in group B1 was significantly higher (Chao-1 index, P = 0.03) and Porphyromonas and Pantoea were the dominant genera (linear discriminant analysis (LDA > 2)) in this group the day after treatment compared to the baseline. No significant difference was detected in the relative abundance and α-diversity of blood microbiota between the baseline and 6 weeks after treatment. Conclusion Local periodontal treatment merely disrupts the stability of blood microbiota in the short term. Periodontitis treatment using full-mouth SRP followed by adjunctive GAP is a promising approach to reduce the introduction of bacteria into the bloodstream during the procedure.


2013 ◽  
Vol 15 (4) ◽  
pp. 474-482 ◽  
Author(s):  
RBA Almeida ◽  
G Akisue ◽  
LML Cardoso ◽  
JC Junqueira ◽  
AO C Jorge

Medicinal plants with fungicide action, antibacterial and anti-inflammatory effects are under investigation. The main purpose of this work was to evaluate the antimicrobial activity of the essential oil from Cymbopogon citratus (DC) Stapf. on strains of Staphylococcus spp., Streptococcus mutans and Candida spp. with planktonic and biofilm growth. To study the micro-organisms in planktonic cells, the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by using 9 clinical strains for each species and 1 ATCC (American Type Culture Collection) from C. albicans, C. tropicalis, C. glabrata, S. aureus, S. epidermidis and S. mutans. In order to evaluate the effects of the essential oils on biofilms, strains of S. aureus (ATCC 6538), S. mutans (ATCC 35688) and C. albicans (ATCC 18804) were used. The biofilm was formed on acrylic resin discs with isolated micro-organisms or in associations. The number of colony-forming-units (CFU) obtained in each biofilm (CFU/ml) was submitted to Student's t statistical test. The results demonstrated that the essential oil of Cymbopogon citratus showed microbiostatic and microbicidal activity against all tested strains. The average CFU/ml for the biofilm of S. aureus, S. mutans and C. albicans, whether isolated or in association, was lower in the group treated with essential oil than in the control group.


2020 ◽  
Vol 9 (9) ◽  
pp. 2722
Author(s):  
Rahul Bose ◽  
Konstantinos Ioannidis ◽  
Federico Foschi ◽  
Abdulaziz Bakhsh ◽  
Robert D. Kelly ◽  
...  

Purpose: This study compared the antimicrobial efficacy of calcium silicate sealers (BioRoot RCS and Total Fill BC) and conventional sealers (AH Plus and Tubli-seal) against planktonic bacteria and a nutrient-stressed multispecies biofilm. Methods: Antimicrobial properties of freshly mixed sealers were investigated using the direct contact test (DCT) and a nutrient-stressed multispecies biofilm comprised of five endodontic strains. Antimicrobial activity was determined using quantitative viable counts and confocal laser scanning microscopy (CLSM) analysis with live/dead staining. The pH of the sealers was analysed over a period of 28 days in Hanks Balanced Salt Solution (HBSS). Analysis of variance (ANOVA) with Tukey tests and the Kruskal–Wallis test were used for data analysis with a significance of 5%. Results: All endodontic sealers exhibited significant antimicrobial activity against planktonic bacteria (p < 0.05). BioRoot RCS caused a significant reduction in viable counts of the biofilms compared to AH Plus and the control (p < 0.05), while no significant difference could be observed compared to TotalFill BC and Tubli-seal (p > 0.05). CLSM analysis showed that BioRoot RCS and TotalFill BC exhibited significant biofilm inhibition compared to Tubli-seal, AH Plus and the control (p < 0.05). BioRoot RCS presented with the highest microbial killing, followed by TotalFill BC and Tubli-seal. Alkalizing activity was seen from the onset by BioRoot RCS, TotalFill BC and AH Plus. After 28 days, BioRoot RCS demonstrated the highest pH in HBSS (pH > 12). Conclusions: Calcium silicate sealers exhibited effective antimicrobial properties. This was demonstrated by superior biofilm inhibition capacity and microbial killing, with strong alkalizing activity compared to epoxy-based and zinc oxide-eugenol-based sealers.


2020 ◽  
Author(s):  
Carolina Tomé ◽  
Inês Anjos ◽  
Victor Martin ◽  
Catarina Santos ◽  
Lidia Gonçalves ◽  
...  

&lt;p&gt;Biofilm development on medical devices is of particular concern and finding new strategies for preventing surface colonization and infection development are urgent. Antimicrobial biosurfactants such as rhamnolipids (RLs), emerge as one possible solution due their lack of resistance development. Using nanoparticles as delivery systems for these compounds may be a promising alternative in the context of biofilm-infections control. As such, the aim of this study was to encapsulate RLs into chitosan nanoparticles (RLs-NPs), test their antimicrobial activity and their biocompatibility profile.&lt;/p&gt; &lt;p&gt;Blank nanoparticles (b-NPs) and RLs-NPs were prepared by ionic gelation. For particles characterization, zeta potential, size distribution and encapsulation efficiency were performed. Minimal inhibitory concentration and biofilm inhibition ability were evaluated towards Staphylococcus aureus (ATCC 25923). To access NPs cytocompatibility the in vitro tetrazolium dye assay (MTT) and morphology observation were performed with a mouse fibroblastic cell line (L929).&lt;/p&gt; &lt;p&gt;RLs-NPs presented an encapsulation efficiency of 74.2&amp;#177;1.3%, a size ranging from 300 to 400 nm and a zeta potential of&amp;#160; 37&amp;#177;1 mV. The minimum inhibitory concentration of RLs-NPs was 130 mg/mL and a 99% biofilm inhibition was achieved with these NPs meaning that their antimicrobial activity is also effective towards sessile bacteria. When compared to control, cell cultures grown in the presence of RLs-NPs presented no significant differences regarding the MTT reduction values and morphology analysis, suggesting that NPs up to 500&amp;#160;mg/mL did not significantly interfere with viability and proliferation.&lt;/p&gt; &lt;p&gt;The results revealed that the RLs-NPs were able to inhibit bacterial growth showing adequate cytocompatibility and might become, after additional studies, a possible approach to fight S. aureus biofilm associated infections.&lt;/p&gt; &lt;p&gt;&lt;strong&gt;Acknowledgments: &lt;/strong&gt;Support for this work was provided by FCT through Portuguese government, PTDC/BTM-SAL/29335/2017 and Pest-UID/DTP/04138/2019&lt;/p&gt;


2020 ◽  
Vol 36 (3) ◽  
Author(s):  
Tabinda Nawaz Khan ◽  
Farhan Raza Khan ◽  
Syed Yawar Ali Abidi

Objective: To compare the microleakage around resin modified glass ionomer cement (RMGIC) based sealants and flowable resin based sealants placed with or without ameloplasty in extracted human teeth. Methods: This in-vitro experimental study was conducted at the Operative Dentistry Department, Dow University of Health Sciences, Karachi, Pakistan from June 2017 to December 2018. Sixty extracted human molars and premolars were assigned to four groups (n=15) each, according to the type of fissure sealant (flowable resin based sealant or resin modified glass ionomer based sealant) used and either placed with or without ameloplasty. Specimens were thermocycled and then immersed in 1% methylene blue for 24 hours. Specimens were then sectioned and examined using stereo-microscope (50X) for microleakage that was scored on an ordinal scale. Mann-Whitney U test and Ordinal regression were applied. Level of significance kept at 0.05. Results: There was a statistically significant difference (p-value <0.001) between the two sealant types for the microleakage scores. Sealants placed with ameloplasty demonstrated significantly higher microleakage values (p-value <0.001). Conclusion: Microleakage was found to be more pronounced in RMGIC based sealants compared to the resin based sealants. Ameloplasty resulted in higher leakage around the sealants irrespective of the chemistry of material. doi: https://doi.org/10.12669/pjms.36.3.1268 How to cite this:Khan TN, Khan FR, Abidi SYA. Ameloplasty is counterproductive in reducing microleakage around Resin Modified Glass Ionomer and Resin based fissure sealants. Pak J Med Sci. 2020;36(3):---------. doi: https://doi.org/10.12669/pjms.36.3.1268 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2020 ◽  
Vol 4 (2) ◽  
pp. 121
Author(s):  
Yoifah Rizka Wedarti ◽  
Laurencia Isabella Loekito ◽  
Fani Pangabdian ◽  
Dwi Andriani

Pendahuluan: Pembentukan biofilm sangat penting dalam patogenesis periodontitis. Porphyromonas gingivalis merupakan bakteri yang banyak ditemukan pada plak gigi dan memiliki kemampuan membentuk biofilm demikian juga Candida albicans memiliki faktor virulensi yang dapat membantu kolonisasi dan proliferasi bakteri di dalam poket periodontal. Ekstrak kitosan kepiting rajungan (Portunus pelagicus) mempunyai potensi antimikrobial yang dapat digunakan sebagai alternatif terapi. Tujuan penelitian ini adalah untuk menganalisis potensi kitosan kepiting rajungan (Portunus pelagicus) dalam penghambatan biofilm Porphyromonas gingivalis dan Candida albicans. Metode: Jenis penelitian adalah eksperimental murni. Penelitian ini menggunakan ekstrak kitosan kepiting rajungan (Portunus pelagicus) terhadap biofilm Porphyromonas gingivalis dan biofilm Candida albicans.  Dibagi menjadi 4 kelompok, di mana tiap kelompok terdiri dari 4 sampel. Kelompok K+ (kelompok kontrol positif), P1(kitosan 0,25%), P2 (kitosan 0,5%), P3 (kitosan 1%). Penghambatan biofilm ditentukan dengan menggunakan metode microtiter plate yang menghasilkan nilai optical density kemudian dihitung dengan menggunakan rumus persen penghambatan. Analisis data menggunakan one-way ANOVA diikuti dengan uji LSD. Hasil: Terdapat perbedaan yang signifikan penghambatan biofilm dari kitosan Portunus pelagicus terhadap Porphyromonas gingivalis (p<0,05) antara kelompok, kecuali K + dengan P3. Sedangkan untuk penghambatan Candida albicans menunjukkan bahwa ada perbedaan yang signifikan dalam persentase penghambatan biofilm (p<0,05), antara kelompok K+ dengan P2 dan P3; kelompok P1 dengan P2 dan P3; kelompok P2 dengan P3. Simpulan: Kitosan Portunus pelagicus memiliki potensi dalam menghambat pembentukan biofilm Porphyromonas gingivalis dan pertumbuhan Candida albicans. Kitosan Portunus pelagicus 1% memiliki efek antimikrobial terbesar pada biofilm.Kata kunci: Biofilm, Porphyromonas gingivalis, Candida albicans, kitosan portunus pelagicus, periodontitis. ABSTRACTIntroduction: Biofilm formation is important in periodontitis pathogenesis. Porphyromonas gingivalis and Candida albicans, which are found in dental plaque and can form a biofilm, have virulence factor that facilitates the bacterial colonisation and proliferation in periodontal pockets. Chitosan extract of flower crab (Portunus pelagicus) has antimicrobial potential which can be used as an alternative therapy. The objective of this research was to analyse the potential of flower crab (Portunus pelagicus) chitosan in the inhibition of Porphyromonas gingivalis and Candida albicans biofilms. Methods: This research was a pure experimental laboratory. This study used flower crab (Portunus pelagicus) chitosan to inhibit the biofilm formation of Porphyromonas gingivalis and Candida albicans. The subjects were divided into four groups, where each group consisted of 4 samples. The K+ (positive control group), P1 (0.25% chitosan), P2 (0.5% chitosan), and P3 (1% chitosan). The biofilm inhibition was determined using the microtiter plate methods, which results in the value of optical density, then calculated using the inhibition formula percentage. Data analysis was conducted using the one-way ANOVA followed by the LSD test. Results: There were significant differences in the Porphyromonas gingivalis biofilm inhibition between groups (p < 0.05), except in group K+ with P3. Whereas for Candida albicans biofilm inhibition showed no significant difference (p < 0.05) between group K+ with P2 and P3; group P1 with P2 and P3; and group P2 with P3. Conclusion: The chitosan of flower crab (Portunus pelagicus) has the potential in inhibiting the biofilm formation of  Porphyromonas gingivalis and Candida albicans. The highest antibacterial effect on the biofilm formation is shown in the concentration of 1%.Keywords: Biofilm, Porphyromonas gingivalis, Candida albicans, chitosan, Portunus pelagicus, periodontitis.


Author(s):  
Sara Arastoo ◽  
Azam Behbudi ◽  
Vahid Rakhshan

Objectives: Pit and fissure sealants are recognized as an effective preventive approach in pediatric dentistry. Composite resin is the most commonly used sealant material. Adding nanoparticles to composite resin could result in production of flowable composite with higher mechanical properties and better flowability than previous sealants. This study aimed to compare the microleakage of a flowable nanocomposite and materials conventionally used as pit and fissure sealants. Materials and Methods: A total of 185 extracted mandibular third molar teeth were selected and randomly divided into 5 groups (n=36): flowable nanocomposite, flowable composite, filled sealants, nano-filled sealants, and unfilled sealants. Five teeth were reserved for examination under a scanning electron microscope (SEM). The samples were thermocycled (5-55°C, 1-minute dwell time) for 1000 cycles and immersed in 0.2% fuchsine solution for 24 hours. Teeth were sectioned buccolingually. Microleakage was assessed qualitatively and quantitatively by means of dye penetration and SEM. Data were analyzed using chi-square, Kruskal-Wallis, and Bonferroni-corrected Mann-Whitney U tests. Results: Qualitative microleakage assessment showed that flowable composite and nanofilled flowable composite had almost no microleakage (P<0.001). Regarding quantitative scores, the nanofilled flowable composite and unfilled fissure sealant showed the lowest and the highest rate of microleakage, respectively. No statistically significant difference was found between the two flowable composites (P=0.317). Filled resin-based sealant had significantly lower microleakage than unfilled resin-based sealant (P<0.001). Conclusion: Use of flowable and nanofilled flowable composites (but not unfilled resin-based fissure sealant) is recommended for sealing of pits and fissures of molars.


Sign in / Sign up

Export Citation Format

Share Document