scholarly journals Activation of Endothelial Nitric Oxide Synthase by the Angiotensin II Type 1 Receptor

Endocrinology ◽  
2006 ◽  
Vol 147 (12) ◽  
pp. 5914-5920 ◽  
Author(s):  
Hiroyuki Suzuki ◽  
Kunie Eguchi ◽  
Haruhiko Ohtsu ◽  
Sadaharu Higuchi ◽  
Sudhir Dhobale ◽  
...  

Enhanced angiotensin II (AngII) action has been implicated in endothelial dysfunction that is characterized as decreased nitric oxide availability. Although endothelial cells have been reported to express AngII type 1 (AT1) receptors, the exact role of AT1 in regulating endothelial NO synthase (eNOS) activity remains unclear. We investigated the possible regulation of eNOS through AT1 in bovine aortic endothelial cells (BAECs) and its functional significance in rat aortic vascular smooth muscle cells (VSMCs). In BAECs infected with adenovirus encoding AT1 and in VSMCs infected with adenovirus encoding eNOS, AngII rapidly stimulated phosphorylation of eNOS at Ser1179. This was accompanied with increased cGMP production. These effects were blocked by an AT1 antagonist. The cGMP production was abolished by a NOS inhibitor as well. To explore the importance of eNOS phosphorylation, VSMCs were also infected with adenovirus encoding S1179A-eNOS. AngII did not stimulate cGMP production in VSMCs expressing S1179A. However, S1179A was able to enhance basal NO production as confirmed with cGMP production and enhanced vasodilator-stimulated phosphoprotein phosphorylation. Interestingly, S1179A prevented the hypertrophic response similar to wild type in VSMCs. From these data, we conclude that the AngII/AT1 system positively couples to eNOS via Ser1179 phosphorylation in ECs and VSMCs if eNOS and AT1 coexist. However, basal level NO production may be sufficient for prevention of AngII-induced hypertrophy by eNOS expression. These data demonstrate a novel molecular mechanism of eNOS regulation and function and thus provide useful information for eNOS gene therapy under endothelial dysfunction.

2003 ◽  
Vol 285 (3) ◽  
pp. H1105-H1112 ◽  
Author(s):  
Bin Tian ◽  
Jian Liu ◽  
Peter Bitterman ◽  
Robert J. Bache

Previously we found that interleukin-1β (IL-1β)-activated inducible nitric oxide (NO) synthase (iNOS) expression and that NO production can trigger cardiac fibroblast (CFb) apoptosis. Here, we provide evidence that angiotensin II (ANG II) significantly attenuated IL-1β-induced iNOS expression and NO production in CFbs while simultaneously decreasing apoptotic frequency. The anti-apoptotic effect of ANG II was abolished when cells were pretreated with the specific ANG II type 1 receptor (AT1) antagonist losartan, but not by the AT2 antagonist DP-123319. Furthermore, ANG II also protected CFbs from apoptosis induced by the NO donor diethylenetriamine NONOate and this effect was associated with phosphorylation of Akt/protein kinase B at Ser473. The effects of ANG II on Akt phosphorylation and NO donor-induced CFb apoptosis were abrogated when cells were preincubated with the specific phosphatidylinositol 3-kinase inhibitors wortmannin or LY-294002. These data demonstrate that ANG II protection of CFbs from IL-1β-induced apoptosis is associated with downregulation of iNOS expression and requires an intact phosphatidylinositol 3-kinase-Akt survival signal pathway. The findings suggest that ANG II and NO may play a role in regulating the cell population size by their countervailing influences on cardiac fibroblast viability.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Shasha Xing ◽  
Xiaoyan Yang ◽  
Wenjing Li ◽  
Fang Bian ◽  
Dan Wu ◽  
...  

Salidroside (SAL) is an active component ofRhodiola roseawith documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2-) induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs) with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced superoxide anion (O2∙-) production induced by H2O2. Meanwhile, SAL pretreatment inhibited H2O2-induced nitric oxide (NO) production. The underlying mechanisms involve the inhibition of H2O2-induced activation of endothelial nitric oxide synthase (eNOS), adenosine monophosphate-activated protein kinase (AMPK), and Akt, as well as the redox sensitive transcription factor, NF-kappa B (NF-κB). SAL also increased mitochondrial mass and upregulated the mitochondrial biogenesis factors, peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1α), and mitochondrial transcription factor A (TFAM) in the endothelial cells. H2O2-induced mitochondrial dysfunction, as demonstrated by reduced mitochondrial membrane potential (Δψm) and ATP production, was rescued by SAL pretreatment. Taken together, these findings implicate that SAL could protect endothelium against H2O2-induced injury via promoting mitochondrial biogenesis and function, thus preventing the overactivation of oxidative stress-related downstream signaling pathways.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Kelly A Hyndman ◽  
Dao H Ho ◽  
Jennifer S Pollock

Previous reports showed that NOS3 is regulated by acetylation through transcriptional mechanisms via histone acetylation or through direct lysine acetylation. Histone deacetylase (HDAC) enzymes and histone acetyltransferases (HATs) modulate acetylation processes. Recent work by our lab, demonstrated increased expression of aortic HDAC1 and HDAC6 while HATs were unchanged in a mouse model of early life stress with endothelial dysfunction. These data suggest a negative correlation between endothelial dysfunction and HDAC expression. The purpose of this study was to test the hypothesis that HDAC1 and 6 regulate endothelial NO production and/or NOS3 acetylation. Initial immunoprecipitation studies with anti-acetyl lysine and anti-NOS3 antibodies demonstrated that NOS3 is basally acetylated in primary bovine aortic endothelial cells (BAECs). Treatment with the HDAC inhibitor, trichostatin A (500 nM) for 1 hr, significantly increased NOS3 acetylation. BAECs were transfected with HDAC1, HDAC6, vector expression plasmids, or untransfected, with nitrite production determined by HPLC and NOS3 acetylation and expression probed by immunoprecipitation and Western blotting. Untransfected and vector transfected control BAECs had similar NO production (357 ± 10 and 344 ± 30 pmol/mg pr/h, respectively, N=6) as well as NOS3 acetylation (7.8 ± 1.6 and 6.8 ±0.3 AU, N=3). HDAC6 transfected BAECs had similar NO production to the control BAECs (272 ± 93 pmol/mg pr/h, N=3) with an increase in NOS3 acetylation (17.4 ± 1.7 AU, N=3). In contrast, HDAC1 overexpression significantly decreased NO production (89 ± 50 pmol/mg pr/h, P< 0.05, N=3) and reduced NOS3 acetylation (3.8 ± 0.5 A.U, N=3), P <0.05). Control transfections, HDAC6, and HDAC1 transfected BAECS all had similar NOS3 expression (10.14 ± 1.8; 9.8 ±1.6; 8.9 ± 1.5; 10.6 ± 1.0 AU, respectively, N=3). Thus, we conclude that HDAC1 regulates NO production via direct lysine deacetylation of NOS3.


2009 ◽  
Vol 296 (1) ◽  
pp. C182-C192 ◽  
Author(s):  
Sumathy Mohan ◽  
Ryszard Konopinski ◽  
Bo Yan ◽  
Victoria E. Centonze ◽  
Mohan Natarajan

A decline in the bioavailability of nitric oxide (NO) that causes endothelial dysfunction is a hallmark of diabetes. The availability of NO to the vasculature is regulated by endothelial nitric oxide synthase (eNOS) activity and the involvement of heat shock protein-90 (Hsp-90) in the regulation of eNOS activity has been demonstrated. Hsp-90 has been shown to interact with upstream kinases [inhibitor κB kinases (IKK)α, β, and γ] in nonvascular cells. In this study, we have investigated the interaction of Hsp-90-IKKβ in endothelial cells under conditions of high glucose (HG) as a possible mechanism that diminishes Hsp-90-eNOS interaction, which could contribute to reduced bioavailability of NO. We report for the first time that IKKβ interacts with Hsp-90, and this interaction is augmented by HG in vascular endothelial cells. HG also augments transcriptional (3.5 ± 0.65-fold) and translational (1.97 ± 0.17-fold) expression as well as the catalytic activity of IKKβ (2.45 ± 0.4-fold). Both IKKβ and eNOS could be coimmunoprecipitated with Hsp-90. Inhibition of Hsp-90 with geldanamycin (2 μM) or Radicicol (20 μM) mitigated (0.45 ± 0.04-fold and 0.93 ± 0.16-fold, respectively) HG induced-IKKβ activity (2.5 ± 0.42-fold). Blocking of IKKβ expression by IKK inhibitor II (15 μM wedelolactone) or small interferring RNA (siRNA) improved Hsp-90-eNOS interaction and NO production under conditions of HG. These results illuminate a possible mechanism for the declining eNOS activity reported under conditions of HG.


2006 ◽  
Vol 290 (6) ◽  
pp. H2320-H2328 ◽  
Author(s):  
Veronica Gambillara ◽  
Céline Chambaz ◽  
Gabriela Montorzi ◽  
Sylvain Roy ◽  
Nikos Stergiopulos ◽  
...  

Hemodynamic forces play an active role in vascular pathologies, particularly in relation to the localization of atherosclerotic lesions. It has been established that low shear stress combined with cyclic reversal of flow direction (oscillatory shear stress) affects the endothelial cells and may lead to an initiation of plaque development. The aim of the study was to analyze the effect of hemodynamic conditions in arterial segments perfused in vitro in the absence of other stimuli. Left common porcine carotid segments were mounted into an ex vivo arterial support system and perfused for 3 days under unidirectional high and low shear stress (6 ± 3 and 0.3 ± 0.1 dyn/cm2) and oscillatory shear stress (0.3 ± 3 dyn/cm2). Bradykinin-induced vasorelaxation was drastically decreased in arteries exposed to oscillatory shear stress compared with unidirectional shear stress. Impaired nitric oxide-mediated vasodilation was correlated to changes in both endothelial nitric oxide synthase (eNOS) gene expression and activation in response to bradykinin treatment. This study determined the flow-mediated effects on native tissue perfused with physiologically relevant flows and supports the hypothesis that oscillatory shear stress is a determinant factor in early stages of atherosclerosis. Indeed, oscillatory shear stress induces an endothelial dysfunction, whereas unidirectional shear stress preserves the function of endothelial cells. Endothelial dysfunction is directly mediated by a downregulation of eNOS gene expression and activation; consequently, a decrease of nitric oxide production and/or bioavailability occurs.


2019 ◽  
Vol 47 (01) ◽  
pp. 97-117 ◽  
Author(s):  
Xiaoji Shi ◽  
Shanshan Wang ◽  
Huiling Luan ◽  
Dina Tuerhong ◽  
Yining Lin ◽  
...  

Elevated palmitic acid (PA) levels are associated with the development of inflammation, insulin resistance (IR) and endothelial dysfunction. Clinopodium chinense (Benth.) O. Kuntze has been shown to lower blood glucose and attenuate high glucose-induced vascular endothelial cells injury. In the present study we investigated the effects of ethyl acetate extract of C. chinense (CCE) on PA-induced inflammation and IR in the vascular endothelium and its molecular mechanism. We found that CCE significantly inhibited PA-induced toll-like receptor 4 (TLR4) expression in human umbilical vein endothelial cells (HUVECs). Consequently, this led to the inhibition of the following downstream adapted proteins myeloid differentiation primary response gene 88, Toll/interleukin-1 receptor domain-containing adaptor-inducing interferon-[Formula: see text] and TNF receptor-associated factor 6. Moreover, CCE inhibited the phosphorylation of Ikappa B kinase [Formula: see text], nuclear factor kappa-B (NF-[Formula: see text]B), c-Jun N-terminal kinase, extracellular regulated protein kinases, p38-mitogen-activated protein kinase (MAPK) and subsequently suppressed the release of tumor necrosis factor-[Formula: see text], interleukin-1[Formula: see text] (IL-1[Formula: see text]) and IL-6. CCE also inhibited IRS-1 serine phosphorylation and ameliorated insulin-mediated tyrosine phosphorylation of IRS-1. Moreover, CCE restored serine/threonine kinase and endothelial nitric oxide synthase (eNOS) activation and thus increased insulin-mediated nitric oxide (NO) production in PA-treated HUVECs. This led to reverse insulin mediated endothelium-dependent relaxation, eNOS phosphorylation and NO production in PA-treated rat thoracic aortas. These results suggest that CCE can significantly inhibit the inflammatory response and alleviate impaired insulin signaling in the vascular endothelium by suppressing TLR4-mediated NF-[Formula: see text]B and MAPK pathways. Therefore, CCE can be considered as a potential therapeutic candidate for endothelial dysfunction associated with IR and diabetes.


2000 ◽  
Vol 279 (1) ◽  
pp. E11-E17 ◽  
Author(s):  
Yaoxian Ding ◽  
Nosratola D. Vaziri ◽  
Richard Coulson ◽  
Vaijinath S. Kamanna ◽  
Daeyoung D. Roh

Diabetes is associated with endothelial dysfunction and increased risk of hypertension, cardiovascular disease, and renal complications. Earlier studies have revealed that hyperglycemia impairs nitric oxide (NO) production and diabetes causes endothelial dysfunction in humans and experimental animals. This study was designed to test the effects of altered concentrations of glucose, insulin, and glucagon, the principal variables in types I and II diabetes, on NO production and endothelial NO synthase (eNOS) expression in cultured human coronary endothelial cells. Cultured endothelial cells were incubated in the presence of glucose at either normal (5.6 mM) or high (25 mM) concentrations for 7 days. The rates of basal and bradykinin-stimulated NO production (nitrate + nitrite) and eNOS protein expression (Western blot) were then determined at the basal condition and in the presence of insulin (10−8 and 10−7 M), glucagon (10−8 and 10−7 M), or both. Incubation with a high-glucose concentration for 7 days significantly downregulated, whereas insulin significantly upregulated, basal and bradykinin-stimulated NO production and eNOS expression in cultured endothelial cells. The stimulatory action of insulin was mitigated by high-glucose concentration and abolished by cotreatment of cells with glucagon. Thus hyperglycemia, insulinopenia, and hyperglucagonemia, which frequently coexist in diabetes, can work in concert to suppress NO production by human coronary artery endothelial cells.


2004 ◽  
Vol 287 (3) ◽  
pp. L559-L568 ◽  
Author(s):  
Susan Olson ◽  
Richard Oeckler ◽  
Xinmei Li ◽  
Litong Du ◽  
Frank Traganos ◽  
...  

We previously reported that angiotensin II stimulates an increase in nitric oxide production in pulmonary artery endothelial cells. The aims of this study were to determine which receptor subtype mediates the angiotensin II-dependent increase in nitric oxide production and to investigate the roles of the angiotensin type 1 and type 2 receptors in modulating angiotensin II-dependent vasoconstriction in pulmonary arteries. Pulmonary artery endothelial cells express both angiotensin II type 1 and type 2 receptors as assessed by RT-PCR, Western blot analysis, and flow cytometry. Treatment of the endothelial cells with PD-123319, a type 2 receptor antagonist, prevented the angiotensin II-dependent increase in nitric oxide synthase mRNA, protein levels, and nitric oxide production. In contrast, the type 1 receptor antagonist losartan enhanced nitric oxide synthase mRNA levels, protein expression, and nitric oxide production. Pretreatment of the endothelial cells with either PD-123319 or an anti-angiotensin II antibody prevented this losartan enhancement of nitric oxide production. Angiotensin II-dependent enhanced hypoxic contractions in pulmonary arteries were blocked by the type 1 receptor antagonist candesartan; however, PD-123319 enhanced hypoxic contractions in angiotensin II-treated endothelium-intact vessels. These data demonstrate that angiotensin II stimulates an increase in nitric oxide synthase mRNA, protein expression, and nitric oxide production via the type 2 receptor, whereas signaling via the type 1 receptor negatively regulates nitric oxide production in the pulmonary endothelium. This endothelial, type 2 receptor-dependent increase in nitric oxide may serve to counterbalance the angiotensin II-dependent vasoconstriction in smooth muscle cells, ultimately regulating pulmonary vascular tone.


Author(s):  
Jianfeng Ye ◽  
Baoguo Chen ◽  
Lisa X. Xu

Atherosclerotic lesions tend to develop in regions where there are separations from unidirectional laminar blood flow, typically near branches, bifurcations, regions of arterial narrowing, and curvatures in the arteries (1, 2). Obviously, homodynamic forces play a key role in atherosclerosis. Studies also indicate that vascular endothelium function disturbance, especially impairment of endothelium dependent vasodilation, is involved (3). Shear stress affects endothelial cells in many ways, such as cytoskeletal rearrangement, decrease of intracellular pH, release of PGI2 and some growth factors (PDGF, FGF, ECGF, TGF-b, etc), activation of IP3 and mitogen-activated protein kinases, and the significant increase in the production of nitric oxide (1,2,4,5). As an important function factor of vascular endothelial cells, nitric oxide (NO) is closely related to the endothelial dysfunction and atherosclerosis (6). Endothelial derived nitric oxide involves in many events in the vasculature, including vasodilation, inhibition of platelet aggregation, adhesion molecule expression, and vascular smooth muscle proliferation, which are directly or indirectly related to atherosclerosis. Endothelial cells release NO more potently in response to increased shear stress than to agonists that raise intracellular free calcium concentration [Ca2+]i. Studies have indicated that NO production increases with a calcium/CaM dependent manner in the first few minutes after exposed to shear stress, followed by a sustained NO production that occurs more than 30min which is Ca2+ independent (7). The activation of eNOS by shear stress, which modulated by Ca/CaM, G protein, tyrosine kinase phosphorylation and eNOS gene expression, is responsible for the increase of NO production (8). However, the contribution of extracellular calcium to the production of NO is somewhat contradictory.


2007 ◽  
Vol 85 (6) ◽  
pp. 709-720 ◽  
Author(s):  
Syamantak Majumder ◽  
K. P. Tamilarasan ◽  
Gopi Krishna Kolluru ◽  
Ajit Muley ◽  
C. Madhavan Nair ◽  
...  

Hepatic stellate cells are liver-specific pericytes and exist in close proximity with endothelial cells. The activation of liver pericytes is intrinsic to liver pathogenesis, and leads to endothelial dysfunction, including the low bioavailability of nitric oxide (NO). However, the role of nitric oxide in pericyte–endothelium cross-talk has not yet been elucidated. This work examines the cellular mechanism of action of NO in pericyte-mediated endothelial dysfunction. We used in vitro coculture and conditioned medium systems to study the effects of activated liver pericytes on endothelial function, and an egg yolk vascular bed model was used to study the effects of activated pericytes on angiogenesis. This study also demonstrates that activated pericytes attenuate the migration, proliferation, permeability, and NO production of endothelial cells. Our results demonstrate that activated pericytes restrict angiogenesis in egg yolk vascular bed models, and NO supplementation recovers 70% of the inhibition. Our results also demonstrate that supplementation with NO, sildenafil citrate (phosphodiesterase inhibitor), and 8-bromo-cGMP (cGMP analog) partially recovers activated-pericyte-mediated endothelium dysfunction. We conclude that NO–cGMP alleviates activated-pericyte-associated endothelial dysfunction, including angiogenesis, in a cGMP-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document