scholarly journals Effects of a High-Fat Diet Exposure in Utero on the Metabolic Syndrome-Like Phenomenon in Mouse Offspring through Epigenetic Changes in Adipocytokine Gene Expression

Endocrinology ◽  
2012 ◽  
Vol 153 (6) ◽  
pp. 2823-2830 ◽  
Author(s):  
Hisashi Masuyama ◽  
Yuji Hiramatsu

The links between obesity in parents and their offspring and the role of genes and a shared environment are not completely understood. Adipocytokines such as leptin and adiponectin play important roles in glucose and lipid metabolism. Therefore, we examined whether the offspring from dams exposed to a high-fat diet during pregnancy (OH mice) exhibited hypertension, insulin resistance, and hyperlipidemia along with epigenetic changes in the expression of adipocytokine genes. OH mice were significantly heavier than the offspring of dams exposed to a control diet during pregnancy (OC mice) from 14 wk of age after an increased caloric intake from 8 wk. OH mice exhibited higher blood pressure and worse glucose tolerance than the OC mice at 24 wk. Total triglyceride and leptin levels were significantly higher and the adiponectin level was significantly lower in OH compared with OC mice at 12 wk of age. This was associated with changes in leptin and adiponectin expression in white adipose tissue. There were lower acetylation and higher methylation levels of histone H3 at lysine 9 of the promoter of adiponectin in adipose tissues of OH mice at 2 wk of age as well as at 12 and 24 wk of age compared with OC mice. In contrast, methylation of histone 4 at lysine 20 in the leptin promoter was significantly higher in OH compared with OC mice. Thus, exposure to a high-fat diet in utero might cause a metabolic syndrome-like phenomenon through epigenetic modifications of adipocytokine, adiponectin, and leptin gene expression.

Endocrinology ◽  
2015 ◽  
Vol 156 (7) ◽  
pp. 2482-2491 ◽  
Author(s):  
Hisashi Masuyama ◽  
Takashi Mitsui ◽  
Etsuko Nobumoto ◽  
Yuji Hiramatsu

Recent studies demonstrate that epigenetic changes under malnutrition in utero might play important roles in transgenerational links with metabolic diseases. We have previously shown that exposure to a high-fat diet (HFD) in utero may cause a metabolic syndrome-like phenomenon through epigenetic modifications of Adiponectin and Leptin genes. Because an association of obesity between mother and offspring endured in multiple generations, we examined whether HFD exposure in utero might affect the metabolic status of female offspring through multigenerational epigenetic changes of Adiponectin and Leptin genes and whether a normal diet in utero for multiple generations might abolish such epigenetic changes after exposure to a HFD in utero using ICR mice. We observed that the effect of maternal HFD on offspring over multiple generations in metabolic syndrome-like phenomenon such as weight and fat mass gain, glucose intolerance, hypertriglyceridemia, abnormal adiponectin and leptin levels, and hypertension, were accumulated with expression and epigenetic changes in Adiponectin and Leptin genes. A normal diet in utero in the subsequent generations after HFD exposure in utero diminished, and a normal diet in utero for 3 generations completely abolished, the effect of HFD in utero on weight and fat mass gain, insulin resistance, serum triglyceride, adiponectin, and leptin levels, with epigenetic changes of Adiponectin and Leptin genes. Exposure to a HFD in utero might affect glucose and lipid metabolism of female offspring through epigenetic modifications to Adiponectin and Leptin genes for multiple generations. Obesogenic and diabetogenic traits were abolished after a maternal normal diet for 3 generations.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Hisashi Masuyama ◽  
Takashi Mitsui ◽  
Eriko Eto ◽  
Kei Hayata

Abstract The links between obesity and metabolic syndrome in parents and their offspring and the role of genes and a shared environment are not completely understood. Adipocytokines play important roles in glucose and lipid metabolism. We have already developed the model mice for transgenerational effect of obesity and metabolic syndrome and demonstrated that exposure to a high fat diet in utero might cause a metabolic syndrome-like phenomenon through epigenetic modifications of adipocytokine, adiponectin and leptin gene expressions in offspring of the model mice. In this study, we examined whether poor circumstance in utero affected the adiponectin gene expression and epigenetic changes of this gene using samples from umbilical cord in patients with hypertensive disorder of pregnancy (HDP) and fetal growth restriction (FGR) or gestational diabetes mellitus (GDM) and heavy for date fetus (HFD) compared with normal pregnant women without HDP, GDM and abnormal fetal growth. We observed that the poor circumstance under HDP with HGR or GDM with HFD caused significantly lower adiponectin gene expression and higher methylation level of histone H3 at lysine 9 of the promoter of adiponectin gene compared with normal control. Thus, poor circumstance in utero affected adiponectin gene expressions through epigenetic modifications, which might result in the increased risk for metabolic syndrome of offspring.


2018 ◽  
Vol 120 (7) ◽  
pp. 751-762 ◽  
Author(s):  
Giorgio Biasiotto ◽  
Isabella Zanella ◽  
Federica Predolini ◽  
Ivonne Archetti ◽  
Moris Cadei ◽  
...  

Abstract7-Hydroxymatairesinol (7-HMR) is a plant lignan abundant in various concentrations in plant foods. The objective of this study was to test HMRLignan™, a purified form of 7-HMR, and the correspondingPicea abiesextract (total extractP. abies; TEP) as dietary supplements on a background of a high-fat diet (HFD)-induced metabolic syndrome in mice and in the 3T3-L1 adipogenesis model. Mice, 3 weeks old, were fed a HFD for 60 d. Subgroups were treated with 3 mg/kg body weight 7-HMR (HMRLignan™) or 10 mg/kg body weight TEP by oral administration. 7-HMR and TEP limited the increase in body weight (−11 and −13 %) and fat mass (−11 and −18 %) in the HFD-fed mice. Epididymal adipocytes were 19 and −12 % smaller and the liver was less steatotic (−62 and −65 %). Serum lipids decreased in TEP-treated mice (−11 % cholesterol, −23 % LDL and −15 % TAG) and sugar metabolism was ameliorated by both lignan preparations, as shown by a more than 70 % decrease in insulin secretion and insulin resistance. The expression of several metabolic genes was modulated by the HFD with an effect that was reversed by lignan. In 3T3-L1 cells, the 7-HMR metabolites enterolactone (ENL) and enterodiol (END) showed a 40 % inhibition of cell differentiation accompanied by the inhibited expression of the adipogenic genesPPARγ,C/EBPαandaP2. Furthermore, END and ENL caused a 10 % reduction in TAG uptake in HEPA 1–6 hepatoma cells. In conclusion, 7-HMR and TEP reduce metabolic imbalances typical of the metabolic syndrome and obesity in male mice, whereas their metabolites inhibit adipogenesis and lipid uptakein vitro.


2019 ◽  
Vol 63 (19) ◽  
pp. 1900425 ◽  
Author(s):  
Sergio Montserrat‐de la Paz ◽  
Maria C. Naranjo ◽  
Maria C. Millan‐Linares ◽  
Sergio Lopez ◽  
Rocio Abia ◽  
...  

2005 ◽  
Vol 64 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Claire J. Stocker ◽  
Jonathan R. S. Arch ◽  
Michael A. Cawthorne

A number of epidemiological studies worldwide have demonstrated a relationship between poor early growth and an increased susceptibility to insulin resistance, visceral obesity, type 2 diabetes and other features of the metabolic syndrome in adulthood. However, the mechanistic basis of this relationship and the relative roles of genes and the environment remain a subject of debate. The ‘thrifty phenotype’ hypothesis proposes that poor fetal nutrition leads to programming of metabolism and an adult phenotype that is adapted to poor but not plentiful nutrition. The maternal reduced-protein rat model has been used to examine the importance of the maternal environment in determining susceptibility to adult disease. Pregnant and lactating rat dams are fed a diet containing 80 g protein/kg as compared with 200 g protein/kg, which leads to growth restriction in utero. Offspring of low-protein dams have increased susceptibility to diabetes, insulin resistance and hypertension when fed a palatable high-fat diet that promotes obesity. Administration of leptin during pregnancy and lactation to these protein-restricted dams produces offspring that have increased metabolic rate and do not become obese or insulin resistant when fed on a high-fat diet. Increased glucocorticoid exposure, particularly during late gestation, has been linked with insulin resistance in adulthood. High levels of fetal glucocorticoids may result from a decreased activity of placental 11β-hydroxysteroid dehydrogenase (11β-HSD) type 2, which normally protects the fetus from high maternal glucocorticoid levels. Leptin administration to protein-restricted dams inhibits the suppression of 11β-HSD-2 and may be one mechanism by which the metabolic syndrome is prevented.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Si Tan ◽  
Jose A. Caparros-Martin ◽  
Vance B. Matthews ◽  
Henrietta Koch ◽  
Fergal O’Gara ◽  
...  

2016 ◽  
Vol 311 (1) ◽  
pp. E236-E245 ◽  
Author(s):  
Hisashi Masuyama ◽  
Takashi Mitsui ◽  
Takeshi Eguchi ◽  
Shoko Tamada ◽  
Yuji Hiramatsu

Recent studies have demonstrated that epigenetic changes resulting from malnutrition might play important roles in transgenerational links with metabolic diseases. Previously, we observed that exposure to a high-fat diet (HFD) in utero caused a metabolic syndrome-like phenomenon through epigenetic modifications of the adiponectin and leptin genes that persisted for multiple generations. Recent etiological studies indicated that paternal BMI had effects on offspring BMI that were independent of but additive to maternal BMI effects. Thus, we examined whether paternal HFD-induced obesity affected the metabolic status of offspring through epigenetic changes in the adiponectin and leptin genes. Additionally, we investigated whether a normal diet during subsequent generations abolished the epigenetic changes associated with paternal HFD exposure before conception. We observed the effects of paternal HFD exposure before conception over multiple generations on offspring metabolic traits, including weight and fat gain, glucose intolerance, hypertriglyceridemia, abnormal adipocytokine levels, hypertension, and adiponectin and leptin gene expression and epigenetic changes. Normal diet consumption by male offspring during the subsequent generation following paternal HFD exposure diminished whereas consumption for two generations completely abolished the effect of paternal HFD exposure on metabolic traits and adipocytokine promoter epigenetic changes in the offspring. The effects of paternal HFD exposure on offspring were relatively weaker than those following HFD exposure in utero. However, paternal HFD exposure had an additive metabolic effect for two generations, suggesting that both paternal and maternal nutrition might affect offspring metabolism through epigenetic modifications of adipocytokine genes for multiple generations.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 754
Author(s):  
Roberta Dourado Cavalcante da Cunha de Sá ◽  
Jussara de Jesus Simão ◽  
Viviane Simões da Silva ◽  
Talita Mendes de Farias ◽  
Maysa Mariana Cruz ◽  
...  

This study aimed to investigate the effects of two commercially available fish oils (FOs) containing different proportions of two omega-3 fatty acids (FA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the metabolic and endocrine dysfunctions of white adipose tissue resulting from obesity. Male C57BL/6J mice, 8 weeks old, received a control or high-fat diet (CO and HF groups, with 9% and 59% energy from fat, respectively) for 8 weeks. The next 8 weeks, the HF group was subdivided into HF, HF+FO/E (HF+5:1 EPA:DHA), and HF+FO/D (HF+5:1 DHA:EPA). Supplementation was performed by gavage, three times a week. All groups that received the HF diet had lower food and caloric intake, but a higher fat intake, body weight (BW) gain, glucose intolerance, and a significant increase in inguinal (ING), retroperitoneal (RP), and epididymal (EPI) adipose tissues when compared to the CO group. Additionally, HF and HF+FO/D groups showed insulin resistance, adipocyte hypertrophy, increased lipolysis and secretion of TNF-α, resistin and IL-10 adipokines by ING and RP adipocytes, and adiponectin only by the HF+FO/D group in ING adipocytes. All of these effects were completely reversed in the HF+FO/E group, which also showed partial reversion in BW gain and glucose intolerance. Both the HF+FO/E and HF+FO/D groups showed a reduction in ING and RP adipose depots when compared to the HF group, but only HF+FO/E in the EPI depot. HF+FO/E, but not HF+FO/D, was able to prevent the changes triggered by obesity in TNF-α, Il-10, and resistin secretion in ING and RP depots. These results strongly suggest that different EPA:DHA ratios have different impacts on the adipose tissue metabolism, FO being rich in EPA, but not in DHA, and effective in reversing the changes induced by obesity.


Sign in / Sign up

Export Citation Format

Share Document