scholarly journals Activin Enhances α- to β-Cell Transdifferentiation as a Source For β-Cells In Male FSTL3 Knockout Mice

Endocrinology ◽  
2016 ◽  
Vol 157 (3) ◽  
pp. 1043-1054 ◽  
Author(s):  
Melissa L. Brown ◽  
Danielle Andrzejewski ◽  
Amy Burnside ◽  
Alan L. Schneyer

Abstract Diabetes results from inadequate β-cell number and/or function to control serum glucose concentrations so that replacement of lost β-cells could become a viable therapy for diabetes. In addition to embryonic stem cell sources for new β-cells, evidence for transdifferentiation/reprogramming of non-β-cells to functional β-cells is accumulating. In addition, de-differentiation of β-cells observed in diabetes and their subsequent conversion to α-cells raises the possibility that adult islet cell fate is malleable and controlled by local hormonal and/or environmental cues. We previously demonstrated that inactivation of the activin antagonist, follistatin-like 3 (FSTL3) resulted in β-cell expansion and improved glucose homeostasis in the absence of β-cell proliferation. We recently reported that activin directly suppressed expression of critical α-cell genes while increasing expression of β-cell genes, supporting the hypothesis that activin is one of the local hormones controlling islet cell fate and that increased activin signaling accelerates α- to β-cell transdifferentiation. We tested this hypothesis using Gluc-Cre/yellow fluorescent protein (YFP) α-cell lineage tracing technology combined with FSTL3 knockout (KO) mice to label α-cells with YFP. Flow cytometry was used to quantify unlabeled and labeled α- and β-cells. We found that Ins+/YFP+ cells were significantly increased in FSTL3 KO mice compared with wild type littermates. Labeled Ins+/YFP+ cells increased significantly with age in FSTL3 KO mice but not wild type littermates. Sorting results were substantiated by counting fluorescently labeled cells in pancreatic sections. Activin treatment of isolated islets significantly increased the number of YFP+/Ins+ cells. These results suggest that α- to β-cell transdifferentiation is influenced by activin signaling and may contribute substantially to β-cell mass.

2021 ◽  
Vol 22 (13) ◽  
pp. 6713
Author(s):  
Romana Bohuslavova ◽  
Ondrej Smolik ◽  
Jessica Malfatti ◽  
Zuzana Berkova ◽  
Zaneta Novakova ◽  
...  

Diabetes is a metabolic disease that involves the death or dysfunction of the insulin-secreting β cells in the pancreas. Consequently, most diabetes research is aimed at understanding the molecular and cellular bases of pancreatic development, islet formation, β-cell survival, and insulin secretion. Complex interactions of signaling pathways and transcription factor networks regulate the specification, growth, and differentiation of cell types in the developing pancreas. Many of the same regulators continue to modulate gene expression and cell fate of the adult pancreas. The transcription factor NEUROD1 is essential for the maturation of β cells and the expansion of the pancreatic islet cell mass. Mutations of the Neurod1 gene cause diabetes in humans and mice. However, the different aspects of the requirement of NEUROD1 for pancreas development are not fully understood. In this study, we investigated the role of NEUROD1 during the primary and secondary transitions of mouse pancreas development. We determined that the elimination of Neurod1 impairs the expression of key transcription factors for α- and β-cell differentiation, β-cell proliferation, insulin production, and islets of Langerhans formation. These findings demonstrate that the Neurod1 deletion altered the properties of α and β endocrine cells, resulting in severe neonatal diabetes, and thus, NEUROD1 is required for proper activation of the transcriptional network and differentiation of functional α and β cells.


2009 ◽  
Vol 83 (16) ◽  
pp. 8004-8011 ◽  
Author(s):  
Young-Sun Lee ◽  
Na Li ◽  
Seungjin Shin ◽  
Hee-Sook Jun

ABSTRACT The D variant of encephalomyocarditis virus (EMC-D virus) causes diabetes in mice by destroying pancreatic β cells. In mice infected with a low dose of EMC-D virus, macrophages play an important role in β-cell destruction by producing soluble mediators such as interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and nitric oxide (NO). To investigate the role of NO and inducible NO synthase (iNOS) in the development of diabetes in EMC-D virus-infected mice, we infected iNOS-deficient DBA/2 mice with EMC-D virus (2 × 102 PFU/mouse). Mean blood glucose levels in EMC-D virus-infected iNOS-deficient mice and wild-type mice were 205.5 and 466.7 mg/dl, respectively. Insulitis and macrophage infiltration were reduced in islets of iNOS-deficient mice compared with wild-type mice at 3 days after EMC-D virus infection. Apoptosis of β cells was decreased in iNOS-deficient mice, as evidenced by reduced numbers of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells. There were no differences in mRNA expression of antiapoptotic molecules Bcl-2, Bcl-xL, Bcl-w, Mcl-1, cIAP-1, and cIAP-2 between wild-type and iNOS-deficient mice, whereas expression of proapoptotic Bax and Bak mRNAs was significantly decreased in iNOS-deficient mice. Expression of IL-1β and TNF-α mRNAs was significantly decreased in both islets and macrophages of iNOS-deficient mice compared with wild-type mice after EMC-D virus infection. Nuclear factor κB was less activated in macrophages of iNOS-deficient mice after virus infection. We conclude that NO plays an important role in the activation of macrophages and apoptosis of pancreatic β cells in EMC-D virus-infected mice and that deficient iNOS gene expression inhibits macrophage activation and β-cell apoptosis, contributing to prevention of EMC-D virus-induced diabetes.


2016 ◽  
Vol 9 (411) ◽  
pp. ec10-ec10
Author(s):  
Annalisa M. VanHook

Pancreatic β cells adjust the secretion of insulin in response to acute changes in plasma glucose concentration. These cells also compensate for long-term changes in insulin sensitivity by adjusting their activity or numbers, or both (see Tarasov and Rorsman). In addition to being insulin resistant, mice lacking the liver insulin receptor (LIRKO mice) also exhibit β cell hyperplasia that depends on factors released from the liver. Using a proteomic approach, El Ouaamari etal. found that the abundance of the protease inhibitor serpinB1 was greater in liver extracts, liver explant–conditioned medium, and serum from LIRKO mice than in those from wild-type mice. SerpinB1 abundance correlated inversely with insulin sensitivity in human patients with risk factors for type 2 diabetes. Recombinant human serpinB1 stimulated the proliferation of β cells in cultured mouse and human islets in a dose-dependent manner. Elastase is a protease inhibited by serpinB1, and forms of serpinB1 that do not inhibit elastase activity did not stimulate proliferation of cultured mouse β cells. Compounds that inhibit elastase also promoted the proliferation of cultured mouse β cells. In mice, elastase inhibitors stimulated the proliferation of both endogenous β cells and the β cells of human islet grafts. Furthermore, overexpression of serpinb1 increased the regeneration of β cells following β cell ablation in zebrafish embryos. In several models of acute and chronic insulin resistance, serpinb1 knockout mice exhibited reduced β cell proliferation compared with wild-type controls. However, β cell proliferation was not abolished in serpinb1 knockouts, indicating that additional factors can induce compensatory proliferation of β cells. Phosphoproteomic analyses demonstrated that treatment of cultured mouse β cells with human serpinB1 stimulated signaling through several pathways that promote cell proliferation and survival. Commentary by Tarasov and Rorsman considers how these findings might be put to clinical use.A. El Ouaamari, E. Dirice, N. Gedeon, J. Hu, J.-Y. Zhou, J. Shirakawa, L. Hou, J. Goodman, C. Karampelias, G. Qiang, J. Boucher, R. Martinez, M. A. Gritsenko, D. F. De Jesus, S. Kahraman, S. Bhatt, R. D. Smith, H.-D. Beer, P. Jungtrakoon, Y. Gong, A. B. Goldfine, C. W. Liew, A. Doria, O. Andersson, W.-J. Qian, E. Remold-O’Donnell, R. N. Kulkarni, SerpinB1 promotes pancreatic β cell proliferation. CellMetab. 23, 194–205 (2016). [PubMed] A. I. Tarasov, P. Rorsman, Dramatis personae in β-cell mass regulation: Enter SerpinB1. CellMetab. 23, 8–10 (2016). [Online Journal]


2016 ◽  
Vol 174 (5) ◽  
pp. R225-R238 ◽  
Author(s):  
Jonàs Juan-Mateu ◽  
Olatz Villate ◽  
Décio L Eizirik

Type 1 diabetes (T1D) is a chronic autoimmune disease in which pancreatic β cells are killed by infiltrating immune cells and by cytokines released by these cells. This takes place in the context of a dysregulated dialogue between invading immune cells and target β cells, but the intracellular signals that decide β cell fate remain to be clarified. Alternative splicing (AS) is a complex post-transcriptional regulatory mechanism affecting gene expression. It regulates the inclusion/exclusion of exons into mature mRNAs, allowing individual genes to produce multiple protein isoforms that expand the proteome diversity. Functionally related transcript populations are co-ordinately spliced by master splicing factors, defining regulatory networks that allow cells to rapidly adapt their transcriptome in response to intra and extracellular cues. There is a growing interest in the role of AS in autoimmune diseases, but little is known regarding its role in T1D. In this review, we discuss recent findings suggesting that splicing events occurring in both immune and pancreatic β cells contribute to the pathogenesis of T1D. Splicing switches in T cells and in lymph node stromal cells are involved in the modulation of the immune response against β cells, while β cells exposed to pro-inflammatory cytokines activate complex splicing networks that modulate β cell viability, expression of neoantigens and susceptibility to immune-induced stress. Unveiling the role of AS in β cell functional loss and death will increase our understanding of T1D pathogenesis and may open new avenues for disease prevention and therapy.


2016 ◽  
Vol 36 (23) ◽  
pp. 2918-2930 ◽  
Author(s):  
Heather L. Hayes ◽  
Lu Zhang ◽  
Thomas C. Becker ◽  
Jonathan M. Haldeman ◽  
Samuel B. Stephens ◽  
...  

The homeodomain transcription factor Pdx-1 has important roles in pancreas and islet development as well as in β-cell function and survival. We previously reported that Pdx-1 overexpression stimulates islet cell proliferation, but the mechanism remains unclear. Here, we demonstrate that overexpression of Pdx-1 triggers proliferation largely by a non-cell-autonomous mechanism mediated by soluble factors. Consistent with this idea, overexpression of Pdx-1 under the control of a β-cell-specific promoter (rat insulin promoter [RIP]) stimulates proliferation of both α and β cells, and overexpression of Pdx-1 in islets separated by a Transwell membrane from islets lacking Pdx-1 overexpression activates proliferation in the untreated islets. Microarray and gene ontology (GO) analysis identified inhibin beta-B (Inhbb), an activin subunit and member of the transforming growth factor β (TGF-β) superfamily, as a Pdx-1-responsive gene. Overexpression of Inhbb or addition of activin B stimulates rat islet cell and β-cell proliferation, and the activin receptors RIIA and RIIB are required for the full proliferative effects of Pdx-1 in rat islets. In human islets, Inhbb overexpression stimulates total islet cell proliferation and potentiates Pdx-1-stimulated proliferation of total islet cells and β cells. In sum, this study identifies a mechanism by which Pdx-1 induces a soluble factor that is sufficient to stimulate both rat and human islet cell proliferation.


2009 ◽  
Vol 297 (2) ◽  
pp. E323-E330 ◽  
Author(s):  
Erica Manesso ◽  
Gianna M. Toffolo ◽  
Yoshifumi Saisho ◽  
Alexandra E. Butler ◽  
Aleksey V. Matveyenko ◽  
...  

Type 2 diabetes is characterized by hyperglycemia, a deficit in β-cells, increased β-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). These characteristics are recapitulated in the human IAPP transgenic (HIP) rat. We developed a mathematical model to quantify β-cell turnover and applied it to nondiabetic wild type (WT) vs. HIP rats from age 2 days to 10 mo to establish 1) whether β-cell formation is derived exclusively from β-cell replication, or whether other sources of β-cells (OSB) are present, and 2) to what extent, if any, there is attempted β-cell regeneration in the HIP rat and if this is through β-cell replication or OSB. We conclude that formation and maintenance of adult β-cells depends largely (∼80%) on formation of β-cells independent from β-cell duplication. Moreover, this source adaptively increases in the HIP rat, implying attempted β-cell regeneration that substantially slows loss of β-cell mass.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ka-Cheuk Liu ◽  
Alethia Villasenor ◽  
Maria Bertuzzi ◽  
Nicole Schmitner ◽  
Niki Radros ◽  
...  

To investigate the role of the vasculature in pancreatic β-cell regeneration, we crossed a zebrafish β-cell ablation model into the avascular npas4l mutant (i.e. cloche). Surprisingly, β-cell regeneration increased markedly in npas4l mutants owing to the ectopic differentiation of β-cells in the mesenchyme, a phenotype not previously reported in any models. The ectopic β-cells expressed endocrine markers of pancreatic β-cells, and also responded to glucose with increased calcium influx. Through lineage tracing, we determined that the vast majority of these ectopic β-cells has a mesodermal origin. Notably, ectopic β-cells were found in npas4l mutants as well as following knockdown of the endothelial/myeloid determinant Etsrp. Together, these data indicate that under the perturbation of endothelial/myeloid specification, mesodermal cells possess a remarkable plasticity enabling them to form β-cells, which are normally endodermal in origin. Understanding the restriction of this differentiation plasticity will help exploit an alternative source for β-cell regeneration.


2021 ◽  
Author(s):  
Ka-Cheuk Liu ◽  
Alethia Villasenor ◽  
Nicole Schmitner ◽  
Niki Radros ◽  
Linn Rautio ◽  
...  

AbstractTo investigate the role of the vasculature in pancreatic β-cell regeneration, we crossed a zebrafish β-cell ablation model into the avascular npas4l mutant (i.e. cloche). Surprisingly, β-cell regeneration increased markedly in npas4l mutants owing to the ectopic differentiation of β-cells in the mesenchyme, a phenotype not previously reported in any models. The ectopic β-cells expressed endocrine markers of pancreatic β-cells, and also reduced glucose levels in the β-cell ablation model. Through lineage tracing, we determined that the vast majority of these ectopic β-cells derived from the mesodermal lineage. Notably, ectopic β-cells were found in npas4l mutants as well as following knockdown of the endothelial determinant Etv2. Together, these data indicate that in the absence of endothelial specification, mesodermal cells possess a remarkable plasticity enabling them to form β-cells, which are normally endodermal in origin. Understanding the restriction of this differentiation plasticity will help exploit an alternative source for β-cell regeneration.


2020 ◽  
Vol 117 (49) ◽  
pp. 31219-31230
Author(s):  
Shanshan Tang ◽  
Mingfeng Zhang ◽  
Samuel Zeng ◽  
Yaxun Huang ◽  
Melissa Qin ◽  
...  

Type 1 diabetes (T1D) results from the autoimmune destruction of β cells, so cure of firmly established T1D requires both reversal of autoimmunity and restoration of β cells. It is known that β cell regeneration in nonautoimmune diabetic mice can come from differentiation of progenitors and/or transdifferentiation of α cells. However, the source of β cell regeneration in autoimmune nonobese diabetic (NOD) mice remains unclear. Here, we show that, after reversal of autoimmunity by induction of haploidentical mixed chimerism, administration of gastrin plus epidermal growth factor augments β cell regeneration and normalizes blood glucose in the firmly established diabetic NOD mice. Using transgenic NOD mice with inducible lineage-tracing markers for insulin-producing β cells, Sox9+ductal progenitors, Nestin+mesenchymal stem cells, and glucagon-producing α cells, we have found that both reactivation of dysfunctional low-level insulin expression (insulinlo) β cells and neogenesis contribute to the regeneration, with the latter predominantly coming from transdifferentiation of α cells. These results indicate that, after reversal of autoimmunity, reactivation of β cells and transdifferentiation of α cells can provide sufficient new functional β cells to reach euglycemia in firmly established T1D.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Magdalena K. Sznurkowska ◽  
Edouard Hannezo ◽  
Roberta Azzarelli ◽  
Lemonia Chatzeli ◽  
Tatsuro Ikeda ◽  
...  

Abstract Pancreatic islets play an essential role in regulating blood glucose level. Although the molecular pathways underlying islet cell differentiation are beginning to be resolved, the cellular basis of islet morphogenesis and fate allocation remain unclear. By combining unbiased and targeted lineage tracing, we address the events leading to islet formation in the mouse. From the statistical analysis of clones induced at multiple embryonic timepoints, here we show that, during the secondary transition, islet formation involves the aggregation of multiple equipotent endocrine progenitors that transition from a phase of stochastic amplification by cell division into a phase of sublineage restriction and limited islet fission. Together, these results explain quantitatively the heterogeneous size distribution and degree of polyclonality of maturing islets, as well as dispersion of progenitors within and between islets. Further, our results show that, during the secondary transition, α- and β-cells are generated in a contemporary manner. Together, these findings provide insight into the cellular basis of islet development.


Sign in / Sign up

Export Citation Format

Share Document