scholarly journals Transcriptional Regulation by Steroid Receptor Coactivator Phosphorylation

2005 ◽  
Vol 26 (3) ◽  
pp. 393-399 ◽  
Author(s):  
Ray-Chang Wu ◽  
Carolyn L. Smith ◽  
Bert W. O’Malley

The basic mechanisms underlying ligand-dependent transcriptional activation by nuclear receptors (NRs) require the sequential recruitment of various coactivators. Increasing numbers of coactivators have been identified in recent years, and both biochemical and genetic studies demonstrate that these coactivators are differentially used by transcription factors, including NRs, in a cell/tissue type- and promoter-specific manner. However, the molecular basis underlying this specificity remains largely unknown. Recently, NRs and coregulators were shown to be targets of posttranslational modifications activated by diverse cellular signaling pathways. It is argued that posttranslational modifications of these proteins provide the basis for a combinatorial code required for specific gene activation by NRs and coactivators, and that this code also enables coactivators to efficiently stimulate the activity of other classes of transcription factors. In this review, we will focus on coactivators and discuss the recent progress in understanding the role of phosphorylation of the steroid receptor coactivator family and the potential ramifications of this posttranslational modification for regulation of gene expression.

2021 ◽  
Vol 118 (6) ◽  
pp. e1922864118 ◽  
Author(s):  
Yu-Ling Lee ◽  
Keiichi Ito ◽  
Wen-Chieh Pi ◽  
I-Hsuan Lin ◽  
Chi-Shuen Chu ◽  
...  

The chimeric transcription factor E2A-PBX1, containing the N-terminal activation domains of E2A fused to the C-terminal DNA-binding domain of PBX1, results in 5% of pediatric acute lymphoblastic leukemias (ALL). We recently have reported a mechanism for RUNX1-dependent recruitment of E2A-PBX1 to chromatin in pre-B leukemic cells; but the subsequent E2A-PBX1 functions through various coactivators and the general transcriptional machinery remain unclear. The Mediator complex plays a critical role in cell-specific gene activation by serving as a key coactivator for gene-specific transcription factors that facilitates their function through the RNA polymerase II transcriptional machinery, but whether Mediator contributes to aberrant expression of E2A-PBX1 target genes remains largely unexplored. Here we show that Mediator interacts directly with E2A-PBX1 through an interaction of the MED1 subunit with an E2A activation domain. Results of MED1 depletion by CRISPR/Cas9 further indicate that MED1 is specifically required for E2A-PBX1–dependent gene activation and leukemic cell growth. Integrated transcriptome and cistrome analyses identify pre-B cell receptor and cell cycle regulatory genes as direct cotargets of MED1 and E2A-PBX1. Notably, complementary biochemical analyses also demonstrate that recruitment of E2A-PBX1 to a target DNA template involves a direct interaction with DNA-bound RUNX1 that can be further stabilized by EBF1. These findings suggest that E2A-PBX1 interactions with RUNX1 and MED1/Mediator are of functional importance for both gene-specific transcriptional activation and maintenance of E2A-PBX1–driven leukemia. The MED1 dependency for E2A-PBX1–mediated gene activation and leukemogenesis may provide a potential therapeutic opportunity by targeting MED1 in E2A-PBX1+ pre-B leukemia.


Development ◽  
1998 ◽  
Vol 125 (20) ◽  
pp. 3947-3954
Author(s):  
P. Balint-Kurti ◽  
G.T. Ginsburg ◽  
J. Liu ◽  
A.R. Kimmel

The pseudoplasmodium or migrating slug of Dictyostelium is composed of non-terminally differentiated cells, organized along an anteroposterior axis. Cells in the anterior region of the slug define the prestalk compartment, whereas most of the posterior zone consists of prespore cells. We now present evidence that the cAMP-dependent protein kinase (PKA) and the RING domain/leucine zipper protein rZIP interact genetically to mediate a transcriptional activation gradient that regulates the differentiation of prespore cells within the posterior compartment of the slug. PKA is absolutely required for prespore differentiation. In contrast, rZIP negatively regulates prespore patterning; rzpA- cells, which lack rZIP, have reduced prestalk differentiation and a corresponding increase in prespore-specific gene expression. Using cell-specific markers and chimaeras of wild-type and rzpA- cells, we show that rZIP functions non-autonomously to establish a graded, prespore gene activation signal but autonomously to localize prespore expression. Overexpression of either the catalytic subunit or a dominant-negative regulatory subunit of PKA further demonstrates that PKA lies within the intracellular pathway that mediates the extracellular signal and regulates prespore patterning. Finally, we show that a 5′-distal segment within a prespore promoter that is responsive to a graded signal is also sensitive to PKA and rZIP, indicating that it acts directly at the level of prespore-specific gene transcription for regulation.


2000 ◽  
Vol 182 (24) ◽  
pp. 6975-6982 ◽  
Author(s):  
Janet K. Hatt ◽  
Philip Youngman

ABSTRACT The Spo0A protein of Bacillus subtilis is a DNA-binding protein that is required for the expression of genes involved in the initiation of sporulation. Spo0A binds directly to and both activates and represses transcription from the promoters of several genes required during the onset of endospore formation. The C-terminal 113 residues are known to contain the DNA-binding activity of Spo0A. Previous studies identified a region of the C-terminal half of Spo0A that is highly conserved among species of endospore-formingBacillus and Clostridium and which encodes a putative helix-turn-helix DNA-binding domain. To test the functional significance of this region and determine if this motif is involved in DNA binding, we changed three conserved residues, S210, E213, and R214, to Gly and/or Ala by site-directed mutagenesis. We then isolated and analyzed the five substitution-containing Spo0A proteins for DNA binding and sporulation-specific gene activation. The S210A Spo0A mutant exhibited no change from wild-type binding, although it was defective in spoIIA and spoIIE promoter activation. In contrast, both the E213G and E213A Spo0A variants showed decreased binding and completely abolished transcriptional activation of spoIIA and spoIIE, while the R214G and R214A variants completely abolished both DNA binding and transcriptional activation. These data suggest that these conserved residues are important for transcriptional activation and that the E213 residue is involved in DNA binding.


2002 ◽  
Vol 16 (12) ◽  
pp. 2819-2827 ◽  
Author(s):  
Qiao Li ◽  
Anna Su ◽  
Jihong Chen ◽  
Yvonne A. Lefebvre ◽  
Robert J. G. Haché

Abstract The effects of acetylation on gene expression are complex, with changes in chromatin accessibility intermingled with direct effects on transcriptional regulators. For the nuclear receptors, both positive and negative effects of acetylation on specific gene transcription have been observed. We report that p300 and steroid receptor coactivator 1 interact transiently with the glucocorticoid receptor and that the acetyltransferase activity of p300 makes an important contribution to glucocorticoid receptor-mediated transcription. Treatment of cells with the deacetylase inhibitor, sodium butyrate, inhibited steroid-induced transcription and altered the transient association of glucocorticoid receptor with p300 and steroid receptor coactivator 1. Additionally, sustained sodium butyrate treatment induced the degradation of p300 through the 26S proteasome pathway. Treatment with the proteasome inhibitor MG132 restored both the level of p300 protein and the transcriptional response to steroid over 20 h of treatment. These results reveal new levels for the regulatory control of gene expression by acetylation and suggest feedback control on p300 activity.


2003 ◽  
Vol 23 (1) ◽  
pp. 335-348 ◽  
Author(s):  
Mari Luz Acevedo ◽  
W. Lee Kraus

ABSTRACT Ligand-dependent transcriptional activation by nuclear receptors involves the recruitment of various coactivators to the promoters of hormone-regulated genes assembled into chromatin. Nuclear receptor coactivators include histone acetyltransferase complexes, such as p300/CBP-steroid receptor coactivator (SRC), as well as the multisubunit mediator complexes (“Mediator”), which may help recruit RNA polymerase II to the promoter. We have used a biochemical approach, including an in vitro chromatin assembly and transcription system, to examine the functional role for Mediator in the transcriptional activity of estrogen receptor α (ERα) with chromatin templates, as well as functional interplay between Mediator and p300/CBP during ERα-dependent transcription. Using three different approaches to functionally inactivate Mediator (immunoneutralization, immunodepletion, and inhibitory polypeptides), we find that Mediator is required for maximal transcriptional activation by ligand-activated ERα. In addition, we demonstrate synergism between Mediator and p300/CBP-SRC during ERα-dependent transcription with chromatin templates, but not with naked DNA. This synergism is important for promoting the formation of a stable transcription preinitiation complex leading to the initiation of transcription. Interestingly, we find that Mediator has an additional distinct role during ERα-dependent transcription not shared by p300/CBP-SRC: namely, to promote preinitiation complex formation for subsequent rounds of transcription reinitiation. These results suggest that one functional consequence of Mediator-ERα interactions is the stimulation of multiple cycles of transcription reinitiation. Collectively, our results indicate an important role for Mediator, as well as its functional interplay with p300/CBP-SRC, in the enhancement of ERα-dependent transcription with chromatin templates.


2012 ◽  
Vol 443 (2) ◽  
pp. 329-338 ◽  
Author(s):  
Howard M. Johnson ◽  
Ezra N. Noon-Song ◽  
Kaisa Kemppainen ◽  
Chulbul M. Ahmed

Many cytokines, hormones and growth factors use the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) pathway for cell signalling and specific gene activation. In the classical model, ligand is said to interact solely with the receptor extracellular domain, which triggers JAK activation of STATs at the receptor cytoplasmic domain. Activated STATs are then said to carry out nuclear events of specific gene activation. Given the limited number of STATs (seven) and the activation of the same STATs by cytokines with different functions, the mechanism of the specificity of their signalling is not obvious. Focusing on IFNγ (interferon γ), we have shown that ligand, receptor and activated JAKs are involved in nuclear events that are associated with specific gene activation, where the receptor subunit IFNGR1 (IFNγ receptor 1) functions as a transcription/co-transcription factor and the JAKs are involved in key epigenetic events. RTKs (receptor tyrosine kinases) such as EGFR [EGF (epidermal growth factor) receptor] and FGFR [FGF (fibroblast growth factor) receptor] also undergo nuclear translocation in association with their respective ligands. EGFR and FGFR, like IFNGR1, have been shown to function as transcription/co-transcription factors. The RTKs also regulate other kinases that have epigenetic effects. Our IFNγ model, as well as the RTKs EGFR and FGFR, have similarities to that of steroid receptor signalling. These systems consist of ligand–receptor–co-activator complexes at the genes that they activate. The co-activators consist of transcription factors and kinases, of which the latter play an important role in the associated epigenetics. It is our view that signalling by cytokines such as IFNγ is but a variation of specific gene activation by steroid hormones.


2000 ◽  
Vol 113 (12) ◽  
pp. 2221-2231 ◽  
Author(s):  
A. Javed ◽  
B. Guo ◽  
S. Hiebert ◽  
J.Y. Choi ◽  
J. Green ◽  
...  

The Runt related transcription factors RUNX (AML/CBF(alpha)/PEBP2(alpha)) are key regulators of hematopoiesis and osteogenesis. Using co-transfection experiments with four natural promoters, including those of the osteocalcin (OC), multi drug resistance (MDR), Rous Sarcoma Virus long terminal repeat (LTR), and bone sialoprotein (BSP) genes, we show that each of these promoters responds differently to the forced expression of RUNX proteins. However, the three RUNX subtypes (i.e. AML1, AML2, and AML3) regulate each promoter in a similar manner. Although the OC promoter is activated in a C terminus dependent manner, the MDR, LTR and BSP promoters are repressed by three distinct mechanisms, either independent of or involving the AML C terminus, or requiring only the conserved C-terminal pentapeptide VWRPY. Using yeast two hybrid assays we find that the C terminus of AML1 interacts with a Groucho/TLE/R-esp repressor protein. Co-expression assays reveal that TLE proteins repress AML dependent activation of OC gene transcription. Western and northern blot analyses suggest that TLE expression is regulated reciprocally with the levels of OC gene expression during osteoblast differentiation. Digital immunofluorescence microscopy results show that TLE1 and TLE2 are both associated with the nuclear matrix, and that a significant subset of each colocalizes with AML transcription factors. This co-localization of TLE and AML proteins is lost upon removing the C terminus of AML family members. Our findings indicate that suppression of AML-dependent gene activation by TLE proteins involves functional interactions with the C terminus of AML at the nuclear matrix in situ. Our data are consistent with the concept that the C termini of AML proteins support activation or repression of cell-type specific genes depending on the regulatory organization of the target promoter and subnuclear localization.


Blood ◽  
2021 ◽  
Author(s):  
Bon Q Trinh ◽  
Simone Ummarino ◽  
Yanzhou Zhang ◽  
Alexander K Ebralidze ◽  
Mahmoud A Bassal ◽  
...  

The mechanism underlying cell type-specific gene induction conferred by ubiquitous transcription factors as well as disruptions caused by their chimeric derivatives in leukemia is not well understood. Here we investigate whether RNAs coordinate with transcription factors to drive myeloid gene transcription. In an integrated genome-wide approach surveying for gene loci exhibiting concurrent RNA- and DNA-interactions with the broadly expressed transcription factor RUNX1, we identified the long noncoding RNA LOUP. This myeloid-specific and polyadenylated lncRNA induces myeloid differentiation and inhibits cell growth, acting as a transcriptional inducer of the myeloid master regulator PU.1. Mechanistically, LOUP recruits RUNX1 to both the PU.1 enhancer and the promoter, leading to the formation of an active chromatin loop. In t(8;21) acute myeloid leukemia, wherein RUNX1 is fused to ETO, the resulting oncogenic fusion protein RUNX1-ETO limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and PU.1 expression. These findings highlight the important role of the interplay between cell type-specific RNAs and transcription factors as well as their oncogenic derivatives in modulating lineage-gene activation and raise the possibility that RNA regulators of transcription factors represent alternative targets for therapeutic development.


2020 ◽  
Author(s):  
Bon Q. Trinh ◽  
Simone Ummarino ◽  
Alexander K. Ebralidze ◽  
Emiel van der Kouwe ◽  
Mahmoud A. Bassal ◽  
...  

ABSTRACTThe mechanism underlying cell type-specific gene induction conferred by ubiquitous transcription factors as well as disruptions caused by their chimeric derivatives in leukemia is not well understood. Here we investigate whether RNAs coordinate with transcription factors to drive myeloid gene transcription. In an integrated genome-wide approach surveying for gene loci exhibiting concurrent RNA- and DNA-interactions with the broadly expressed transcription factor RUNX1, we identified the long noncoding RNA LOUP. This myeloid-specific and polyadenylated lncRNA induces myeloid differentiation and inhibits cell growth, acting as a transcriptional inducer of the myeloid master regulator PU.1. Mechanistically, LOUP recruits RUNX1 to both the PU.1 enhancer and the promoter, leading to the formation of an active chromatin loop. In t(8;21) acute myeloid leukemia, wherein RUNX1 is fused to ETO, the resulting oncogenic fusion protein RUNX1-ETO limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and PU.1 expression. These findings highlight the important role of the interplay between cell type-specific RNAs and transcription factors as well as their oncogenic derivatives in modulating lineage-gene activation and raise the possibility that RNA regulators of transcription factors represent alternative targets for therapeutic development.KEY POINTSlncRNA LOUP coordinates with RUNX1 to induces PU.1 long-range transcription, conferring myeloid differentiation and inhibiting cell growth.RUNX1-ETO limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and PU.1 expression in t(8;21) AML.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 356-356
Author(s):  
John Strouboulis ◽  
Patrick Rodriguez ◽  
Edgar Bonte ◽  
Jeroen Krijgsveld ◽  
Katarzyna Kolodziej ◽  
...  

Abstract GATA-1 is a key transcription factor essential for the differentiation of the erythroid, megakaryocytic and eosinophilic lineages. GATA-1 functions in erythropoiesis involve lineage-specific gene activation and repression of early hematopoietic transcription programs. GATA-1 is known to interact with other transcription factors, such as FOG-1, TAL-1 and Sp1 and also with CBP/p300 and the SWI/SNF chromatin remodeling complex in vitro. Despite this information the molecular basis of its essential functions in erythropoiesis remains unclear. We show here that GATA-1 is mostly present in a high (> 670kDa) molecular weight complex that appears to be dynamic during erythroid differentiation. In order to characterize the GATA-1 complex(es) from erythroid cells, we employed an in vivo biotinylation tagging approach in mouse erythroleukemic (MEL) cells1. Briefly, this involved the fusion of a small (23aa) peptide tag to GATA-1 and its specific, efficient biotinylation by the bacterial BirA biotin ligase which is co-expressed with tagged GATA-1 in MEL cells. Nuclear extracts expressing biotinylated tagged GATA-1 were bound directly to streptavidin beads and co-purifying proteins were identified by mass spectrometry. In addition to the known GATA-1-interacting transcription factors FOG-1, TAL-1 and Ldb-1, we describe novel interactions with the essential hematopoietic transcription factor Gfi-1b and the chromatin remodeling complexes MeCP1 and ACF/WCRF. Significantly, GATA-1 interaction with the repressive MeCP1 complex requires FOG-1. We also show in erythroid cells that GATA-1, FOG-1 and MeCP1 are stably bound to repressed genes representing early hematopoietic (e.g. GATA-2) or alternative lineage-specific (e.g. eosinophilic) transcription programs, whereas the GATA-1/Gfi1b complex is bound to repressed genes involved in cell proliferation. In contrast, GATA-1 and TAL-1 are bound to the active erythroid-specific EKLF gene. Our findings on GATA-1 complexes provide novel insight as to the critical roles that GATA-1 plays in many aspects of erythropoiesis by revealing the GATA-1 partners in the execution of specific functions.


Sign in / Sign up

Export Citation Format

Share Document