scholarly journals A New Multisystem Disorder Caused by the Gαs Mutation p.F376V

2018 ◽  
Vol 104 (4) ◽  
pp. 1079-1089 ◽  
Author(s):  
Heike Biebermann ◽  
Gunnar Kleinau ◽  
Dirk Schnabel ◽  
Detlef Bockenhauer ◽  
Louise C Wilson ◽  
...  

Abstract Context The α subunit of the stimulatory G protein (Gαs) links numerous receptors to adenylyl cyclase. Gαs, encoded by GNAS, is expressed predominantly from the maternal allele in certain tissues. Thus, maternal heterozygous loss-of-function mutations cause hormonal resistance, as in pseudohypoparathyroidism type Ia, whereas somatic gain-of-function mutations cause hormone-independent endocrine stimulation, as in McCune-Albright syndrome. Objective We report two unrelated boys presenting with a new combination of clinical findings that suggest both gain and loss of Gαs function. Design and Setting Clinical features were studied and sequencing of GNAS was performed. Signaling capacities of wild-type and mutant Gαs were determined in the presence of different G protein–coupled receptors (GPCRs) under basal and agonist-stimulated conditions. Results Both unrelated patients presented with unexplained hyponatremia in infancy, followed by severe early onset gonadotrophin-independent precocious puberty and skeletal abnormalities. An identical heterozygous de novo variant (c.1136T>G; p.F376V) was found on the maternal GNAS allele in both patients; this resulted in a clinical phenotype that differed from known Gαs-related diseases and suggested gain of function at the vasopressin 2 receptor (V2R) and lutropin/choriogonadotropin receptor (LHCGR), yet increased serum PTH concentrations indicative of impaired proximal tubular PTH1 receptor (PTH1R) function. In vitro studies demonstrated that Gαs-F376V enhanced ligand-independent signaling at the PTH1R, LHCGR, and V2R and, at the same time, blunted ligand-dependent responses. Structural homology modeling suggested mutation-induced modifications at the C-terminal α5 helix of Gαs that are relevant for interaction with GPCRs and signal transduction. Conclusions The Gαs p.F376V mutation causes a previously unrecognized multisystem disorder.

2018 ◽  
Vol 56 (6) ◽  
pp. 388-395 ◽  
Author(s):  
Kohji Kato ◽  
Fuyuki Miya ◽  
Nanako Hamada ◽  
Yutaka Negishi ◽  
Yoko Narumi-Kishimoto ◽  
...  

BackgroundIn this study, we aimed to identify the gene abnormality responsible for pathogenicity in an individual with an undiagnosed neurodevelopmental disorder with megalencephaly, ventriculomegaly, hypoplastic corpus callosum, intellectual disability, polydactyly and neuroblastoma. We then explored the underlying molecular mechanism.MethodsTrio-based, whole-exome sequencing was performed to identify disease-causing gene mutation. Biochemical and cell biological analyses were carried out to elucidate the pathophysiological significance of the identified gene mutation.ResultsWe identified a heterozygous missense mutation (c.173C>T; p.Thr58Met) in the MYCN gene, at the Thr58 phosphorylation site essential for ubiquitination and subsequent MYCN degradation. The mutant MYCN (MYCN-T58M) was non-phosphorylatable at Thr58 and subsequently accumulated in cells and appeared to induce CCND1 and CCND2 expression in neuronal progenitor and stem cells in vitro. Overexpression of Mycn mimicking the p.Thr58Met mutation also promoted neuronal cell proliferation, and affected neuronal cell migration during corticogenesis in mouse embryos.ConclusionsWe identified a de novo c.173C>T mutation in MYCN which leads to stabilisation and accumulation of the MYCN protein, leading to prolonged CCND1 and CCND2 expression. This may promote neurogenesis in the developing cerebral cortex, leading to megalencephaly. While loss-of-function mutations in MYCN are known to cause Feingold syndrome, this is the first report of a germline gain-of-function mutation in MYCN identified in a patient with a novel megalencephaly syndrome similar to, but distinct from, CCND2-related megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. The data obtained here provide new insight into the critical role of MYCN in brain development, as well as the consequences of MYCN defects.


2002 ◽  
Vol 1 (6) ◽  
pp. 865-874 ◽  
Author(s):  
Cristina Sánchez-Martínez ◽  
José Pérez-Martín

ABSTRACT Candida albicans is able to respond to environmental changes by inducing a distinct morphological program, which is related to the ability to infect mammalian hosts. Although some of the signal transduction pathways involved in this response are known, it is not clear how the environmental signals are sensed and transmitted to these transduction cascades. In this work, we have studied the function of GPA2, a new gene from C. albicans, which encodes a G-protein α-subunit homologue. We demonstrate that Gpa2 plays an important role in the yeast-hypha dimorphic transition in the response of C. albicans to some environmental inducers. Deletion of both alleles of the GPA2 gene causes in vitro defects in morphological transitions in Spider medium and SLAD medium and in embedded conditions but not in medium containing serum. These defects cannot be reversed by exogenous addition of cyclic AMP. However, overexpression of HST7, which encodes a component of the filament-inducing mitogen-activated protein kinase (MAPK) cascade, bypasses the Gpa2 requirement. We have obtained different gain-of-function and loss-of-function mutant alleles of the GPA2 gene, which we have introduced in several C. albicans genetic backgrounds. Our results indicate that, in response to environmental cues, Gpa2 is required for the regulation of a MAPK signaling pathway.


2019 ◽  
Vol 28 (17) ◽  
pp. 2937-2951 ◽  
Author(s):  
Lina Liang ◽  
Xia Li ◽  
Sébastien Moutton ◽  
Samantha A Schrier Vergano ◽  
Benjamin Cogné ◽  
...  

Abstract KCNMA1 encodes the large-conductance Ca2+- and voltage-activated K+ (BK) potassium channel α-subunit, and pathogenic gain-of-function variants in this gene have been associated with a dominant form of generalized epilepsy and paroxysmal dyskinesia. Here, we genetically and functionally characterize eight novel loss-of-function (LoF) variants of KCNMA1. Genome or exome sequencing and the participation in the international Matchmaker Exchange effort allowed for the identification of novel KCNMA1 variants. Patch clamping was used to assess functionality of mutant BK channels. The KCNMA1 variants p.(Ser351Tyr), p.(Gly356Arg), p.(Gly375Arg), p.(Asn449fs) and p.(Ile663Val) abolished the BK current, whereas p.(Cys413Tyr) and p.(Pro805Leu) reduced the BK current amplitude and shifted the activation curves toward positive potentials. The p.(Asp984Asn) variant reduced the current amplitude without affecting kinetics. A phenotypic analysis of the patients carrying the recurrent p.(Gly375Arg) de novo missense LoF variant revealed a novel syndromic neurodevelopmental disorder associated with severe developmental delay, visceral and cardiac malformations, connective tissue presentations with arterial involvement, bone dysplasia and characteristic dysmorphic features. Patients with other LoF variants presented with neurological and developmental symptoms including developmental delay, intellectual disability, ataxia, axial hypotonia, cerebral atrophy and speech delay/apraxia/dysarthria. Therefore, LoF KCNMA1 variants are associated with a new syndrome characterized by a broad spectrum of neurological phenotypes and developmental disorders. LoF variants of KCNMA1 cause a new syndrome distinctly different from gain-of-function variants in the same gene.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Nathan L Absalom ◽  
Vivian W Y Liao ◽  
Kavitha Kothur ◽  
Dinesh C Indurthi ◽  
Bruce Bennetts ◽  
...  

Abstract Variants in the GABRB3 gene encoding the β3-subunit of the γ-aminobutyric acid type A ( receptor are associated with various developmental and epileptic encephalopathies. Typically, these variants cause a loss-of-function molecular phenotype whereby γ-aminobutyric acid has reduced inhibitory effectiveness leading to seizures. Drugs that potentiate inhibitory GABAergic activity, such as nitrazepam, phenobarbital or vigabatrin, are expected to compensate for this and thereby reduce seizure frequency. However, vigabatrin, a drug that inhibits γ-aminobutyric acid transaminase to increase tonic γ-aminobutyric acid currents, has mixed success in treating seizures in patients with GABRB3 variants: some patients experience seizure cessation, but there is hypersensitivity in some patients associated with hypotonia, sedation and respiratory suppression. A GABRB3 variant that responds well to vigabatrin involves a truncation variant (p.Arg194*) resulting in a clear loss-of-function. We hypothesized that patients with a hypersensitive response to vigabatrin may exhibit a different γ-aminobutyric acid A receptor phenotype. To test this hypothesis, we evaluated the phenotype of de novo variants in GABRB3 (p.Glu77Lys and p.Thr287Ile) associated with patients who are clinically hypersensitive to vigabatrin. We introduced the GABRB3 p.Glu77Lys and p.Thr287Ile variants into a concatenated synaptic and extrasynaptic γ-aminobutyric acid A receptor construct, to resemble the γ-aminobutyric acid A receptor expression by a patient heterozygous for the GABRB3 variant. The mRNA of these constructs was injected into Xenopus oocytes and activation properties of each receptor measured by two-electrode voltage clamp electrophysiology. Results showed an atypical gain-of-function molecular phenotype in the GABRB3 p.Glu77Lys and p.Thr287Ile variants characterized by increased potency of γ-aminobutyric acid A without change to the estimated maximum open channel probability, deactivation kinetics or absolute currents. Modelling of the activation properties of the receptors indicated that either variant caused increased chloride flux in response to low concentrations of γ-aminobutyric acid that mediate tonic currents. We therefore propose that the hypersensitivity reaction to vigabatrin is a result of GABRB3 variants that exacerbate GABAergic tonic currents and caution is required when prescribing vigabatrin. In contrast, drug strategies increasing tonic currents in loss-of-function variants are likely to be a safe and effective therapy. This study demonstrates that functional genomics can explain beneficial and adverse anti-epileptic drug effects, and propose that vigabatrin should be considered in patients with clear loss-of-function GABRB3 variants.


2021 ◽  
Vol 22 (15) ◽  
pp. 8247
Author(s):  
Cheng-Tsung Hsiao ◽  
Thomas F. Tropea ◽  
Ssu-Ju Fu ◽  
Tanya M. Bardakjian ◽  
Pedro Gonzalez-Alegre ◽  
...  

Loss-of-function mutations in the KV4.3 channel-encoding KCND3 gene are linked to neurodegenerative cerebellar ataxia. Patients suffering from neurodegeneration associated with iron deposition may also present with cerebellar ataxia. The mechanism underlying brain iron accumulation remains unclear. Here, we aim to ascertain the potential pathogenic role of KCND3 variant in iron accumulation-related cerebellar ataxia. We presented a patient with slowly progressive cerebellar ataxia, parkinsonism, cognitive impairment, and iron accumulation in the basal ganglia and the cerebellum. Whole exome sequencing analyses identified in the patient a heterozygous KCND3 c.1256G>A (p.R419H) variant predicted to be disease-causing by multiple bioinformatic analyses. In vitro biochemical and immunofluorescence examinations revealed that, compared to the human KV4.3 wild-type channel, the p.R419H variant exhibited normal protein abundance and subcellular localization pattern. Electrophysiological investigation, however, demonstrated that the KV4.3 p.R419H variant was associated with a dominant increase in potassium current amplitudes, as well as notable changes in voltage-dependent gating properties leading to enhanced potassium window current. These observations indicate that, in direct contrast with the loss-of-function KCND3 mutations previously reported in cerebellar ataxia patients, we identified a rare gain-of-function KCND3 variant that may expand the clinical and molecular spectra of neurodegenerative cerebellar disorders associated with brain iron accumulation.


Author(s):  
Yuri A. Zarate ◽  
Tomoko Uehara ◽  
Kota Abe ◽  
Masayuki Oginuma ◽  
Sora Harako ◽  
...  

2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. 46-48
Author(s):  
M Mehta ◽  
L Wang ◽  
C Guo ◽  
N Warner ◽  
Q Li ◽  
...  

Abstract Background Very early-onset inflammatory bowel disease (VEOIBD) is an emerging global disease, that results in inflammation of the digestive tract. Severe forms of VEOIBD can be caused by mutations in a single gene (monogenic variants) and, can result in death. A candidate gene which codes for a non-receptor tyrosine kinase (nRTK) has recently been implicated as a monogenic cause of IBD (unpublished). Whole exome sequencing was performed in two unrelated children who presented with symptoms of IBD identifying two distinct de novo gain of function mutations (S550Y and P342T). Both mutations are located in the highly conserved region of the nRTK, and were predicted to have similar downstream effects. Furthermore, four other patients with a variety of adult-onset immune disorders have recently been identified with rare variants in the same gene (M450I, R42P, A353T, V433M, S550F) but, their potential gain of function status remains to be determined. Studies show that this nRTK is an essential mediator in inflammation. It is expressed in both intestinal epithelial and immune cells however, its role in infantile IBD is unclear. This protein is first activated by phosphorylation and is linked to activating downstream transcription factors such as ERK and JNK. All these target proteins play a meaningful role in intestinal inflammation in patients with IBD. Aims Since we identified P342T and S550Y to be gain of function, we wanted to determine if the new variants exhibit a similar downstream impact on target protein expression levels when compared with S550Y and P342T. We also wanted to identify if all variants can be rescued with a known nRTK inhibitor. It is hypothesized that the new variants are gain of function and that all variants can be rescued with the inhibitor. Methods Using western blot analysis, the activation of ERK, JNK and nRTK was compared between wildtype (WT) and mutants. This in vitro method helped identify the degree of activation. For the second part of the study, HEK293T cells were treated with inhibitor to test for a rescue of phenotypes via western blot analysis. Results Results show an increased activation of nRTK, ERK and JNK in all variants with S550Y and S550F having the highest activation. Furthermore, pharmacological inhibition using small molecular kinase inhibitors resulted in decreased activation of nRTK, ERK and JNK suggesting a rescue of phenotypes. Conclusions Characterizing the downstream functional impact of these nRTK variants is an important first step to determine if gain of function nRTK mutations drive IBD. With a rising prevalence of IBD worldwide, these findings may lead to the development of pharmacological nRTK inhibitors as a novel personalized therapeutic approach for these patients and possibly for the broader IBD population. Funding Agencies CIHR


2016 ◽  
Vol 57 (3) ◽  
pp. R127-R142 ◽  
Author(s):  
Fadil M Hannan ◽  
Valerie N Babinsky ◽  
Rajesh V Thakker

The extracellular calcium (Ca2+o)-sensing receptor (CaSR) is a family C G protein-coupled receptor, which detects alterations in Ca2+o concentrations and modulates parathyroid hormone secretion and urinary calcium excretion. The central role of the CaSR in Ca2+o homeostasis has been highlighted by the identification of mutations affecting the CASR gene on chromosome 3q21.1. Loss-of-function CASR mutations cause familial hypocalciuric hypercalcaemia (FHH), whereas gain-of-function mutations lead to autosomal dominant hypocalcaemia (ADH). However, CASR mutations are only detected in ≤70% of FHH and ADH cases, referred to as FHH type 1 and ADH type 1, respectively, and studies in other FHH and ADH kindreds have revealed these disorders to be genetically heterogeneous. Thus, loss- and gain-of-function mutations of the GNA11 gene on chromosome 19p13.3, which encodes the G-protein α-11 (Gα11) subunit, lead to FHH type 2 and ADH type 2, respectively; whilst loss-of-function mutations of AP2S1 on chromosome 19q13.3, which encodes the adaptor-related protein complex 2 sigma (AP2σ) subunit, cause FHH type 3. These studies have demonstrated Gα11 to be a key mediator of downstream CaSR signal transduction, and also revealed a role for AP2σ, which is involved in clathrin-mediated endocytosis, in CaSR signalling and trafficking. Moreover, FHH type 3 has been demonstrated to represent a more severe FHH variant that may lead to symptomatic hypercalcaemia, low bone mineral density and cognitive dysfunction. In addition, calcimimetic and calcilytic drugs, which are positive and negative CaSR allosteric modulators, respectively, have been shown to be of potential benefit for these FHH and ADH disorders.


2011 ◽  
Vol 301 (3) ◽  
pp. E467-E473 ◽  
Author(s):  
Mirjam Dirlewanger ◽  
Delphine Huser ◽  
Maria-Christina Zennaro ◽  
Eric Girardin ◽  
Laurent Schild ◽  
...  

Pseudohypoaldosteronism type 1 (PHA1) is a monogenic disorder of mineralocorticoid resistance characterized by salt wasting, hyperkalemia, high aldosterone levels, and failure to thrive. An autosomal recessive form (AR-PHA1) is caused by mutations in the epithelial sodium channel ENaC with usually severe and persisting multiorgan symptoms. The autosomal dominant form of PHA1 (AD-PHA1) is due to mutations in the mineralocorticoid receptor causing milder and transient symptoms restricted to the kidney. We identified a homozygous missense mutation in the SCNN1A gene (c.727T>C/p.Ser243Pro), encoding α-subunit of ENaC (α-ENaC) in a prematurely born boy with a severe salt-losing syndrome. The patient improved rapidly under treatment, and dietary salt supplementation could be stopped after 6 mo. Interestingly, the patient's sibling born at term and harboring the same homozygous Ser243Pro mutation showed no symptom of salt-losing nephropathy. In vitro expression of the αSer243Pro ENaC mutant revealed a slight but significant decrease in ENaC activity that is exacerbated in the presence of high Na+ load. Our study provides the first evidence that ENaC activity is critical for the maintenance of salt balance in the immature kidney of preterm babies. Together with previous studies, it shows that, when the kidney is fully mature, the severity of the symptoms of AR-PHA1 is related to the degree of the ENaC loss of function. Finally, this study identifies a novel functional domain in the extracellular loop of ENaC.


2008 ◽  
Vol 93 (5) ◽  
pp. 1865-1873 ◽  
Author(s):  
Daniel Kelberman ◽  
Sandra C. P. de Castro ◽  
Shuwen Huang ◽  
John A. Crolla ◽  
Rodger Palmer ◽  
...  

Abstract Context: Heterozygous, de novo mutations in the transcription factor SOX2 are associated with bilateral anophthalmia or severe microphthalmia and hypopituitarism. Variable additional abnormalities include defects of the corpus callosum and hippocampus. Objective: We have ascertained a further three patients with severe eye defects and pituitary abnormalities who were screened for mutations in SOX2. To provide further evidence of a direct role for SOX2 in hypothalamo-pituitary development, we have studied the expression of the gene in human embryonic tissues. Results: All three patients harbored heterozygous SOX2 mutations: a deletion encompassing the entire gene, an intragenic deletion (c.70_89del), and a novel nonsense mutation (p.Q61X) within the DNA binding domain that results in impaired transactivation. We also show that human SOX2 can inhibit β-catenin-driven reporter gene expression in vitro, whereas mutant SOX2 proteins are unable to repress efficiently this activity. Furthermore, we show that SOX2 is expressed throughout the human brain, including the developing hypothalamus, as well as Rathke’s pouch, the developing anterior pituitary, and the eye. Conclusions: Patients with SOX2 mutations often manifest the unusual phenotype of hypogonadotropic hypogonadism, with sparing of other pituitary hormones despite anterior pituitary hypoplasia. SOX2 expression patterns in human embryonic development support a direct involvement of the protein during development of tissues affected in these individuals. Given the critical role of Wnt-signaling in the development of most of these tissues, our data suggest that a failure to repress the Wnt-β-catenin pathway could be one of the underlying pathogenic mechanisms associated with loss-of-function mutations in SOX2.


Sign in / Sign up

Export Citation Format

Share Document