scholarly journals MBX-102/JNJ39659100, a Novel Peroxisome Proliferator-Activated Receptor-Ligand with Weak Transactivation Activity Retains Antidiabetic Properties in the Absence of Weight Gain and Edema

2009 ◽  
Vol 23 (7) ◽  
pp. 975-988 ◽  
Author(s):  
Francine M. Gregoire ◽  
Fang Zhang ◽  
Holly J. Clarke ◽  
Thomas A. Gustafson ◽  
Dorothy D. Sears ◽  
...  

Abstract MBX-102/JNJ39659100 (MBX-102) is in clinical development as an oral glucose-lowering agent for the treatment of type 2 diabetes. MBX-102 is a nonthiazolidinedione (TZD) selective partial agonist of peroxisome proliferator-activated receptor (PPAR)-γ that is differentiated from the TZDs structurally, mechanistically, preclinically and clinically. In diabetic rodent models, MBX-102 has insulin-sensitizing and glucose-lowering properties comparable to TZDs without dose-dependent increases in body weight. In vitro, in contrast with full PPAR-γ agonist treatment, MBX-102 fails to drive human and murine adipocyte differentiation and selectively modulates the expression of a subset of PPAR-γ target genes in mature adipocytes. Moreover, MBX-102 does not inhibit osteoblastogenesis of murine mesenchymal cells. Compared with full PPAR-γ agonists, MBX-102 displays differential interactions with the PPAR-γ ligand binding domain and possesses reduced ability to recruit coactivators. Interestingly, in primary mouse macrophages, MBX-102 displays enhanced antiinflammatory properties compared with other PPAR-γ or α/γ agonists, suggesting that MBX-102 has more potent transrepression activity. In summary, MBX-102 is a selective PPAR-γ modulator with weak transactivation but robust transrepression activity. MBX-102 exhibits full therapeutic activity without the classical PPAR-γ side effects and may represent the next generation insulin sensitizer.

2009 ◽  
Vol 30 (4) ◽  
pp. 414-414
Author(s):  
Francine M. Gregoire ◽  
Fang Zhang ◽  
Holly J. Clarke ◽  
Thomas A. Gustafson ◽  
Dorothy D. Sears ◽  
...  

ABSTRACT MBX-102/JNJ39659100 (MBX-102) is in clinical development as an oral glucose lowering agent for the treatment of type 2 diabetes. MBX-102 is a non-thiazolidinedione (TZD) selective partial agonist of PPAR-γ that is differentiated from the TZDs structurally, mechanistically, pre-clinically and clinically. In diabetic rodent models, MBX-102 has insulin sensitizing and glucose lowering properties comparable to TZDs without dose-dependent increases in body weight. In vitro, in contrast with full PPAR-γ agonist treatment, MBX-102 fails to drive human and murine adipocyte differentiation and selectively modulates the expression of a subset of PPAR-γ target genes in mature adipocytes. Moreover, MBX-102 does not inhibit oteoblastogenesis of murine mesenchymal cells. Compared to full PPAR-γ agonists, MBX-102 displays differential interactions with the PPAR-γ ligand binding domain (LBD) and possesses reduced ability to recruit coactivators. Interestingly, in primary mouse macrophages, MBX-102 displays enhanced anti-inflammatory properties compared to other PPAR-γ or α/γ agonists suggesting that MBX-102 has more potent transrepression activity. In summary, MBX-102 is a selective PPAR-γ modulator with weak transactivation but robust transrepression activity. MBX-102 exhibits full therapeutic activity without the classical PPAR-γ side effects and may represent the next generation insulin sensitizer.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2431 ◽  
Author(s):  
Lars Porskjær Christensen ◽  
Rime Bahij El-Houri

Type 2 diabetes (T2D) is a metabolic disorder where insulin-sensitive tissues show reduced sensitivity towards insulin and a decreased glucose uptake (GU), which leads to hyperglycaemia. Peroxisome proliferator-activated receptor (PPAR)γ plays an important role in lipid and glucose homeostasis and is one of the targets in the discovery of drugs against T2D. Activation of PPARγ by agonists leads to a conformational change in the ligand-binding domain, a process that alters the transcription of several target genes involved in glucose and lipid metabolism. Depending on the ligands, they can induce different sets of genes that depends of their recruitment of coactivators. The activation of PPARγ by full agonists such as the thiazolidinediones leads to improved insulin sensitivity but also to severe side effects probably due to their behavior as full agonists. Partial PPARγ agonists are compounds with diminished agonist efficacy compared to full agonist that may exhibit the same antidiabetic effect as full agonists without inducing the same magnitude of side effects. In this review, we describe a screening platform for the identification of partial PPARγ agonists from plant extracts that could be promising lead compounds for the development of antidiabetic drugs. The screening platform includes a series of in vitro bioassays, such as GU in adipocytes, PPARγ-mediated transactivation, adipocyte differentiation and gene expression as well as in silico docking for partial PPARγ agonism.


Medicina ◽  
2019 ◽  
Vol 55 (5) ◽  
pp. 160 ◽  
Author(s):  
László-István Bába ◽  
Melinda Kolcsár ◽  
Imre Zoltán Kun ◽  
Zsófia Ulakcsai ◽  
Fruzsina Bagaméry ◽  
...  

Background and Objectives: The use of the dopamine-partial agonist subclass (also termed dopamine stabilizers) of atypical antipsychotics for the treatment of negative schizophrenia symptoms and some mood disorders has increased recently. Similar to other second-generation antipsychotics (SGAs), aripiprazole (ARI) and cariprazine (CAR) also influence food intake, but the peripheral effects of these drugs on adipose–tissue homeostasis, including adipokine secretion as well as lipo- and adipogenesis, are not fully elucidated. In this study, we explored the adipocyte-related mechanisms induced by second-generation antipsychotics (SGAs), leading to changes in peripheral signals involved in energy homeostasis. Materials and Methods: CAR, a new SGA, was compared with ARI and olanzapine (OLA), using cell cultures to study adipogenesis, and the expression levels of peroxisome proliferator-activated receptor-γ (PPAR-γ) was measured in adipocytes derived from mouse fibroblasts, by western blotting on days 7, 14, and 21 postinduction. The triglyceride (TG) content of the cells was also evaluated on day 15 using Oil Red O staining, and the adiponectin (AN) content in the cell culture supernatants was quantified on days 7 and 15 by enzyme-linked immunosorbent assay. Cells were treated with two concentrations of ARI (0.5 and 20 µg/mL), OLA (1 and 20 µg/mL), and CAR (0.1 and 2 µg/mL). Results: Both concentrations of ARI and OLA, as well as the lower concentration of CAR, significantly increased the TG contents. The AN levels in the supernatants were significantly increased by the higher concentration of ARI on days 7 and 15 (p < 0.05). Although PPAR-γ levels were not significantly affected by ARI and OLA, the lower concentration of CAR induced a significant time-dependent decrease in PPAR-γ expression (p < 0.05). Conclusions: The in vitro adipogenesis considered from TG accumulation, AN secretion, and PPAR-γ expression was differently influenced by ARI, CAR, and OLA. Understanding the adipocyte-related mechanisms of antipsychotics could contribute to understanding their weight-influencing effect.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1386 ◽  
Author(s):  
Danyelle M. Liddle ◽  
Meaghan E. Kavanagh ◽  
Amanda J. Wright ◽  
Lindsay E. Robinson

Adipose tissue (AT) expansion induces local hypoxia, a key contributor to the chronic low-grade inflammation that drives obesity-associated disease. Apple flavonols phloretin (PT) and phlorizin (PZ) are suggested anti-inflammatory molecules but their effectiveness in obese AT is inadequately understood. Using in vitro models designed to reproduce the obese AT microenvironment, 3T3-L1 adipocytes were cultured for 24 h with PT or PZ (100 μM) concurrent with the inflammatory stimulus lipopolysaccharide (LPS; 10 ng/mL) and/or the hypoxia mimetic cobalt chloride (CoCl2; 100 μM). Within each condition, PT was more potent than PZ and its effects were partially mediated by peroxisome proliferator-activated receptor (PPAR)-γ (p < 0.05), as tested using the PPAR-γ antagonist bisphenol A diglycidyl ether (BADGE). In LPS-, CoCl2-, or LPS + CoCl2-stimulated adipocytes, PT reduced mRNA expression and/or secreted protein levels of inflammatory and macrophage chemotactic adipokines, and increased that of anti-inflammatory and angiogenic adipokines, which was consistent with reduced mRNA expression of M1 polarization markers and increased M2 markers in RAW 264.7 macrophages cultured in media collected from LPS + CoCl2-simulated adipocytes (p < 0.05). Further, within LPS + CoCl2-stimulated adipocytes, PT reduced reactive oxygen species accumulation, nuclear factor-κB activation, and apoptotic protein expression (p < 0.05). Overall, apple flavonols attenuate critical aspects of the obese AT phenotype.


PPAR Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Yan ◽  
Si-Chi Xu ◽  
Chun-Yan Kong ◽  
Xiao-Yang Zhou ◽  
Zhou-Yan Bian ◽  
...  

Background. Oxidative stress, inflammation and cardiac apoptosis were closely involved in doxorubicin (DOX)-induced cardiac injury. Piperine has been reported to suppress inflammatory response and pyroptosis in macrophages. However, whether piperine could protect the mice against DOX-related cardiac injury remain unclear. This study aimed to investigate whether piperine inhibited DOX-related cardiac injury in mice. Methods. To induce DOX-related acute cardiac injury, mice in DOX group were intraperitoneally injected with a single dose of DOX (15 mg/kg). To investigate the protective effects of piperine, mice were orally treated for 3 weeks with piperine (50 mg/kg, 18:00 every day) beginning two weeks before DOX injection. Results. Piperine treatment significantly alleviated DOX-induced cardiac injury, and improved cardiac function. Piperine also reduced myocardial oxidative stress, inflammation and apoptosis in mice with DOX injection. Piperine also improved cell viability, and reduced oxidative damage and inflammatory factors in cardiomyocytes. We also found that piperine activated peroxisome proliferator-activated receptor-γ (PPAR-γ), and the protective effects of piperine were abolished by the treatment of the PPAR-γ antagonist in vivo and in vitro. Conclusions. Piperine could suppress DOX-related cardiac injury via activation of PPAR-γ in mice.


2013 ◽  
Vol 305 (2) ◽  
pp. F143-F154 ◽  
Author(s):  
Harshini Mudaliar ◽  
Carol Pollock ◽  
Muralikrishna Gangadharan Komala ◽  
Steven Chadban ◽  
Huiling Wu ◽  
...  

Inflammatory responses are central to the pathogenesis of diabetic nephropathy. Toll-like receptors (TLRs) are ligand-activated membrane-bound receptors which induce inflammatory responses predominantly through the activation of NF-κB. TLR2 and 4 are present in proximal tubular cells and are activated by endogenous ligands upregulated in diabetic nephropathy, including high-mobility group box-1 (HMGB1) and fibronectin. Human proximal tubules were exposed to 5 mM (control), 11.2 mM (approximating the clinical diagnostic threshold for diabetes mellitus), and 30 mM (high) glucose for 72 h or 7 days. Cells were harvested for protein, mRNA, and nuclear extract to assess for TLR2, 4, and inflammatory markers. Glucose (11.2 mM) maximally increased TLR2 and 4 expression, HMGB1 release, and NF-κB activation with increased expression of cytokines. However, only TLR2 expression and subsequent NF-κB binding were sustained at 7 days. Recombinant HMGB1 induced NF-κB activation, which was prevented by both TLR2 silencing [small interfering (si)RNA] and TLR4 inhibition. Peroxisome proliferator-activated receptor-γ (PPAR-γ) transcription was reduced by exposure to 11.2 mM glucose with an increase observed at 30 mM glucose at 24 h. This may reflect a compensatory increase in PPAR-γ induced by exposure to 30 mM glucose, limiting the inflammatory response. Therefore, short-term moderate increases in glucose in vitro increase HMGB1, which mediates NF-κB activation through both TLR2 and 4. Furthermore, in vivo, streptozotocin-induced diabetic mice exhibited an increase in tubular TLR2 and HMGB1 expression. These results collectively suggest that TLR2 is likely to be the predominant long-term mediator of NF-κB activation in transducing inflammation in diabetic nephropathy.


PPAR Research ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Sean R. Pyper ◽  
Navin Viswakarma ◽  
Yuzhi Jia ◽  
Yi-Jun Zhu ◽  
Joseph D. Fondell ◽  
...  

The peroxisome proliferator-activated receptor- (PPAR) plays a key role in lipid metabolism and energy combustion. Chronic activation of PPAR in rodents leads to the development of hepatocellular carcinomas. The ability of PPAR to induce expression of its target genes depends on Mediator, an evolutionarily conserved complex of cofactors and, in particular, the subunit 1 (Med1) of this complex. Here, we report the identification and characterization of PPAR-interacting cofactor (PRIC)-295 (PRIC295), a novel coactivator protein, and show that it interacts with the Med1 and Med24 subunits of the Mediator complex. PRIC295 contains 10 LXXLL signature motifs that facilitate nuclear receptor binding and interacts with PPAR and five other members of the nuclear receptor superfamily in a ligand-dependent manner. PRIC295 enhances the transactivation function of PPAR, PPAR, and ER. These data demonstrate that PRIC295 interacts with nuclear receptors such as PPAR and functions as a transcription coactivator underin vitroconditions and may play an important role in mediating the effectsin vivoas a member of the PRIC complex with Med1 and Med24.


2012 ◽  
Vol 32 (6) ◽  
pp. 619-629 ◽  
Author(s):  
Chanjuan Hao ◽  
Xuejia Cheng ◽  
Hongfei Xia ◽  
Xu Ma

The environmental obesogen hypothesis proposes that exposure to endocrine disruptors during developmental ‘window’ contributes to adipogenesis and the development of obesity. MEHP [mono-(2-ethylhexyl) phthalate], a metabolite of the widespread plasticizer DEHP [di-(2-ethylhexyl) phthalate], has been found in exposed organisms and identified as a selective PPARγ (peroxisome-proliferator-activated receptor γ) modulator. However, implication of MEHP on adipose tissue development has been poorly investigated. In the present study, we show the dose-dependent effects of MEHP on adipocyte differentiation and GPDH (glycerol-3-phosphate dehydrogenase) activity in the murine 3T3-L1 cell model. MEHP induced the expression of PPARγ as well as its target genes required for adipogenesis in vitro. Moreover, MEHP perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to a low dose of MEHP significantly increased b.w. (body weight) and fat pad weight in male offspring at PND (postnatal day) 60. In addition, serum cholesterol, TAG (triacylglycerol) and glucose levels were also significantly elevated. These results suggest that perinatal exposure to MEHP may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders.


2020 ◽  
Vol 25 (6) ◽  
pp. 297-308
Author(s):  
Maurizio Cortada ◽  
Eric Wei ◽  
Neha Jain ◽  
Soledad Levano ◽  
Daniel Bodmer

<b><i>Background:</i></b> Telmisartan is an angiotensin II receptor blocker that has pleiotropic effects and protective properties in different cell types. Moreover, telmisartan has also shown partial agonism on the peroxisome proliferator-activated receptor γ (PPAR-γ). Auditory hair cells (HCs) express PPAR-γ, and the protective role of PPAR-γ agonists on HCs has been shown. <b><i>Objectives:</i></b> The objective of this study was to investigate the effects of telmisartan on gentamicin-induced ototoxicity in vitro. <b><i>Methods:</i></b> Cochlear explants were exposed to gentamicin with or without telmisartan, and/or GW9662, an irreversible PPAR-γ antagonist. <b><i>Results:</i></b> Telmisartan protected auditory HCs against gentamicin-induced ototoxicity. GW9662 completely blocked this protective effect, suggesting that it was mediated by PPAR-γ signaling. Exposure to GW9662 or telmisartan alone was not toxic to auditory HCs. <b><i>Conclusions:</i></b> We found that telmisartan, via PPAR-γ signaling, protects auditory HCs from gentamicin-induced ototoxicity. Therefore, telmisartan could potentially be used in the future to prevent or treat sensorineural hearing loss.


Sign in / Sign up

Export Citation Format

Share Document