scholarly journals Expression of the Parathyroid Hormone-Related Peptide Gene in Retinoic Acid-Induced Differentiation: Involvement of ETS and Sp1

1997 ◽  
Vol 11 (10) ◽  
pp. 1435-1448 ◽  
Author(s):  
Marcel Karperien ◽  
Hetty Farih-Sips ◽  
Clemens W.G.M. Löwik ◽  
Siegfried W. de Laat ◽  
Johannes Boonstra ◽  
...  

Abstract Differentiation of P19 embryonal carcinoma (EC) and embryonal stem (ES)-5 cells with retinoic acid (RA) induces expression of PTH-related peptide (PTHrP) mRNA. In this study we have characterized a region between nucleotide (nt) −88 and −58 relative to the transcription start site in the murine PTHrP gene that was involved in this expression. Sequence analysis identified two partially overlapping binding sites for the Ets family of transcription factors and an inverted Sp1-binding site. Two major specific bands were detected in a bandshift assay using an oligonucleotide spanning nt −88 and −58 as a probe and nuclear extracts from both undifferentiated and RA-differentiated P19 EC cells. The lower complex consisted of Ets-binding proteins as demonstrated by competition with consensus Ets-binding sites, while the upper complex contained Sp1-binding activity as demonstrated by competition with consensus Sp1-binding sites. The observed bandshift patterns using nuclear extracts of undifferentiated or RA-differentiated P19 cells were indistinguishable, suggesting that the differentiation-mediated expression was not caused by the induction of expression of new transcription factors. Mutations in either of the Ets-binding sites or the Sp1-binding site completely abolished RA-induced expression of PTHrP promoter reporter constructs, indicating that the RA effect was dependent on the simultaneous action of both Ets- and Sp1-like activities. Furthermore, these mutations also abolished promoter activity in cells that constitutively expressed PTHrP mRNA, suggesting a central role for the Ets and Sp1 families of transcription factors in the expression regulation of the mouse PTHrP gene.

1993 ◽  
Vol 178 (5) ◽  
pp. 1681-1692 ◽  
Author(s):  
L R Gottschalk ◽  
D M Giannola ◽  
S G Emerson

Interleukin 3 (IL-3) is a hematopoietic stem-cell growth and differentiation factor that is expressed solely in activated T and NK cells. Studies to date have identified elements 5' to the IL-3 coding sequences that regulate its transcription, but the sequences that confer T cell-specific expression remain to be clearly defined. We have now identified DNA sequences that are required for T cell-restricted IL-3 gene transcription. A series of transient transfections performed with human IL-3-chloramphenicol acetyltransferase (CAT) reporter plasmids in T and non-T cells revealed that a plasmid containing 319 bp of 5' flanking sequences was active exclusively in T cells. Deletion analysis revealed that T cell specificity was conferred by a 49-bp fragment (bp -319 to -270) that included a potential binding site for AP-1 transcription factors 6 bp upstream of a binding site for Elf-1, a member of the Ets family of transcription factors. DNaseI footprint and electrophoretic mobility shift assay analyses performed with MLA-144 T cell nuclear extracts demonstrated that this 49-bp region contains a nuclear protein binding region that includes consensus AP-1 and Elf-1 binding sites. In addition, extracts prepared from purified human T cells contained proteins that bound to synthetic oligonucleotides corresponding to the AP-1 and Elf-1 binding sites. In vitro-transcribed and -translated Elf-1 protein bound specifically to the Elf-1 site, and Elf-1 antisera competed and super shifted nuclear protein complexes present in MLA-144 nuclear extracts. Moreover, addition of anti-Jun family antiserum in electrophoretic mobility shift assay reactions completely blocked formation of the AP-1-related complexes. Transient transfection studies in MLA-144 T cells revealed that constructs containing mutations in the AP-1 site almost completely abolished CAT activity while mutation of the Elf-1 site or the NF-IL-3 site, a previously described nuclear protein binding site (bp. -155 to -148) in the IL-3 promoter, reduced CAT activity to < 25% of the activity given by wild-type constructs. We conclude that expression of the human IL-3 gene requires the AP-1 and Elf-1 binding sites; however, unlike other previously characterized cytokine genes such as IL-2, the AP-1 and Elf-1 factors can bind independently in the IL-3 gene.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 15 (2) ◽  
pp. 1034-1048 ◽  
Author(s):  
E Ben-Shushan ◽  
H Sharir ◽  
E Pikarsky ◽  
Y Bergman

The Oct-3/4 transcription factor is a member of the POU family of transcription factors and, as such, probably plays a crucial role in mammalian embryogenesis and differentiation. It is expressed in the earliest stages of embryogenesis and repressed in subsequent stages. Similarly, Oct-3/4 is expressed in embryonal carcinoma (EC) cells and is repressed in retinoic acid (RA)-differentiated EC cells. Previously we have shown that the Oct-3/4 promoter harbors an RA-responsive element, RAREoct, which functions in EC cells as a binding site for positive regulators of transcription and in RA-differentiated EC cells as a binding site for positive regulators of transcription and in RA-differentiated EC cells as a binding site for negative regulators. Our present results demonstrate that in P19 and RA-treated P19 cells, the orphan receptors ARP-1/COUP-TFII and EAR-3/COUP-TFI repress Oct-3/4 promoter activity through the RAREoct site in a dose-dependent manner. While the N-terminal region of the ARP-1/COUP-TFII receptor is dispensable for this repression, the C-terminal domain harbors the silencing region. Interestingly, three different RA receptor:retinoid X receptor (RAR:RXR) heterodimers, RAR alpha:RXR alpha, RAR beta:RXR alpha, and RAR beta:RXR beta, specifically bind and activate Oct-3/4 promoter through the RAREoct site in a ligand-dependent manner. We have shown that antagonism between ARP-1/COUP-TFII or EAR-3/COUP-TFI and the RAR:RXR heterodimers and their intracellular balance modulate Oct-3/4 expression. Oct-3/4 transcriptional repression by the orphan receptors can be overcome by increasing amounts of RAR:RXR heterodimers. Conversely, activation of Oct-3/4 promoter by RAR:RXR heterodimers was completely abolished by EAR-3/COUP-TFI and by ARP-1/COUP-TFII. The orphan receptors bind the RAREoct site with a much higher affinity than the RAR:RXR heterodimers. This high binding affinity provides ARP-1/COUP-TFII and EAR-3/COUP-TFI with the ability to compete with and even displace RAR:RXR from the RAREoct site and subsequently to actively silence the Oct-3/4 promoter. We have shown that RA treatment of EC cells results in up-regulation of ARP-1/COUP-TFII and EAR-3/COUP-TFI expression. Most interestingly, in RA-treated EC cells, the kinetics of Oct-3/4 repression inversely correlates with the kinetics of ARP-1/COUP-TFII and EAR-3/COUP-TFI activation. These findings are in accordance with the suggestion that these orphan receptors participate in controlling a network of transcription factors, among which Oct-3/4 is included, which may establish the pattern of normal gene expression during development.


1994 ◽  
Vol 14 (6) ◽  
pp. 4116-4125 ◽  
Author(s):  
M L Espinás ◽  
J Roux ◽  
J Ghysdael ◽  
R Pictet ◽  
T Grange

We have previously shown that two remote glucocorticoid-responsive units (GRUs) of the rat tyrosine aminotransferase (TAT) gene contain multiple binding sites for several transcription factor families, including the glucocorticoid receptor (GR). We report here the identification of two novel binding sites for members of the Ets family of transcription factors in one of these GRUs. One of these binding sites overlaps the major GR-binding site (GRBS), whereas the other is located in its vicinity. Inactivation of the latter binding site leads to a twofold reduction of the glucocorticoid response, whereas inactivation of the site overlapping the GRBS has no detectable effect. In vivo footprinting analysis reveals that the active site is occupied in a glucocorticoid-independent manner, in a TAT-expressing cell line, even though it is located at a position where there is a glucocorticoid-dependent alteration of the nucleosomal structure. This same site is not occupied in a cell line that does not express TAT but expresses Ets-related DNA-binding activities, suggesting the existence of an inhibitory effect of chromatin structure at a hierarchical level above the nucleosome. The inactive Ets-binding site that overlaps the GRBS is not occupied even in TAT-expressing cells. However, this same overlapping site can confer Ets-dependent stimulation of both basal and glucocorticoid-induced levels when it is isolated from the GRU and duplicated. Ets-1 expression in COS cells mimics the activity of the Ets-related activities present in hepatoma cells. These Ets-binding sites could participate in the integration of the glucocorticoid response of the TAT gene with signal transduction pathways triggered by other nonsteroidal extracellular stimuli.


1994 ◽  
Vol 14 (8) ◽  
pp. 5309-5317
Author(s):  
S P Murphy ◽  
J J Gorzowski ◽  
K D Sarge ◽  
B Phillips

Two distinct murine heat shock transcription factors, HSF1 and HSF2, have been identified. HSF1 mediates the transcriptional activation of heat shock genes in response to environmental stress, while the function of HSF2 is not understood. Both factors can bind to heat shock elements (HSEs) but are maintained in a non-DNA-binding state under normal growth conditions. Mouse embryonal carcinoma (EC) cells are the only mammalian cells known to exhibit HSE-binding activity, as determined by gel shift assays, even when maintained at normal physiological temperatures. We demonstrate here that the constitutive HSE-binding activity present in F9 and PCC4.aza.R1 EC cells, as well as a similar activity found to be present in mouse embryonic stem cells, is composed predominantly of HSF2. HSF2 in F9 EC cells is trimerized and is present at higher levels than in a variety of nonembryonal cell lines, suggesting a correlation of these properties with constitutive HSE-binding activity. Surprisingly, transcription run-on assays suggest that HSF2 in unstressed EC cells does not stimulate transcription of two putative target genes, hsp70 and hsp86. Genomic footprinting analysis indicates that HSF2 is not bound in vivo to the HSE of the hsp70 promoter in unstressed F9 EC cells, although HSF2 is present in the nucleus and the promoter is accessible to other transcription factors and to HSF1 following heat shock. Thus trimerization and nuclear localization of HSF2 do not appear to be sufficient for in vivo binding of HSF2 to the HSE of the hsp70 promoter in unstressed F9 EC cells.


1991 ◽  
Vol 11 (7) ◽  
pp. 3642-3651 ◽  
Author(s):  
C Devlin ◽  
K Tice-Baldwin ◽  
D Shore ◽  
K T Arndt

The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.


1997 ◽  
Vol 324 (2) ◽  
pp. 547-553 ◽  
Author(s):  
Hyungtae KIM ◽  
William D. PENNIE ◽  
Yi SUN ◽  
Nancy H. COLBURN

Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular-matrix-associated protein that suppresses tumorigenicity or invasion in several model systems. We have identified, by in vitro footprinting, six AP-1 (activator protein-1) or AP-1-like binding sites in the mouse TIMP-3 promoter that bind purified c-Jun homodimers. Electrophoretic mobility shift assays revealed that the non-consensus fifth AP-1 binding site (AP-720; nt -720 to -714) had the strongest binding activity for recombinant c-Jun protein, and that the fourth binding site (AP-763; nt -763 to -754) and AP-720 showed strong binding activity for cellular nuclear proteins. Antibody supershift and blocking experiments suggest that AP-720, but not AP-763, binds authentic AP-1 components. Transient transfection reporter assays of deletion constructs showed that the region spanning AP-720 has the highest transcriptional activity, and that sequences 5′ to this region (nt -2846 to -747) may contain negative regulatory elements. The deletion construct containing about 500 nt 5′ to the transcriptional start, but no AP-1 sites, showed lower but significant activity, suggesting both AP-1-dependent and -independent regulation of the mouse TIMP-3 promoter. Mutational inactivation of AP-720 abolished the activity increment that distinguished the reporter construct containing both AP-720 and sixth AP-1 binding site (AP-617; nt -617 to -611) from that containing only AP-617. In summary, we report here that both AP-1 and non-AP-1 elements contribute to activity, with the non-consensus AP-1 site at -720 showing the greatest functional significance among the AP-1 sites.


1996 ◽  
Vol 318 (1) ◽  
pp. 241-245 ◽  
Author(s):  
Hedley A COPPOCK ◽  
Ali A OWJI ◽  
Stephen R BLOOM ◽  
David M SMITH

We have previously demonstrated specific binding sites for adrenomedullin, a novel member of the calcitonin family of peptides, in rat muscles. It is unclear whether these receptors are vascular or muscular. Receptors for the structurally similar calcitonin gene-related peptide (CGRP) are present on myocytes and might be involved in the regulation of myocyte glucose metabolism and control by motor neurons. We investigated whether adrenomedullin binding sites were present on L6 myocytes. Specific [125I]adrenomedullin binding sites were demonstrated where adrenomedullin competed with an IC50 of 0.22±0.04 nM (mean±S.E.M.) and a concentration of binding sites (Bmax) of 0.95±0.19 pmol/mg of protein (mean±S.E.M.). CGRP and the specific CGRP receptor antagonist CGRP(8–37) competed weakly at this site (IC50 > 10 and 601±298 nM respectively). Binding studies with [125I]CGRP revealed a binding site for CGRP (IC50 = 0.13±0.01 nM; Bmax = 0.83±0.10 pmol/mg of protein) where both CGRP(8–37) and adrenomedullin competed with [125I]CGRP with IC50 values of 1.15±0.12 and 8.68±0.98 nM respectively. Chemical cross-linking showed the CGRP and adrenomedullin binding site–ligand complexes to have approximate molecular masses of 82 and 76 kDa respectively. Both CGRP and adrenomedullin increased adenylate cyclase activity with similar potencies. In both cases adenylate cyclase activation was blocked by CGRP(8–37). Stimulation with 10 nM adrenomedullin or CGRP caused an increase in the percentage of total activated cellular cAMP-dependent protein kinase from 38% in resting cells to 100% and 98% respectively. Therefore in L6 cells adrenomedullin can bind to CGRP receptors, activating adenylate cyclase and cAMP-dependent protein kinase.


1983 ◽  
Vol 158 (2) ◽  
pp. 334-352 ◽  
Author(s):  
GD Ross ◽  
SL Newman ◽  
JD Lambris ◽  
JE Devery-Pocius ◽  
JA Cain ◽  
...  

The many different recognized functions of C3 are dependent upon the ability of the activated C3 molecule both to bind covalently to protein and carbohydrate surfaces and to provide binding sites for as many as eleven different proteins. The location of the binding sites for six of these different proteins (factors B and H, complement receptors CR(1), CR(2) and CR(3) and conglutinin) was examined in the naturally occurring C3-fragments generated by C3 activation (C3b) and degradation by Factor I (iC3b, C3c, C3d,g) and trypsin (C3d). Evidence was obtained for at least four distinct binding sites in C3 for these six different C3 ligands. One binding site for B was detectable only in C3b, whereas a second binding site for H and CR(1) was detectable in both C3b and iC3b. The affinity of the binding site for H and CR(1) was charge dependent and considerably reduced in iC3b as compared to C3b. H binding to iC3b-coated sheep erythrocytes (EC3bi) was measurable only in low ionic strength buffer (4 mS). The finding that C3c-coated microspheres bound to CR(1), indicated that this second binding site was still intact in the C3c fragment. However, H binding to C3c was not examined. A third binding site in C3 for CR(2) was exposed in the d region by factor I cleavage of C3b into iC3b, and the activity of this site was unaffected by the further I cleavage of iC3b into C3d,g. Removal of the 8,000-dalton C3g fragment from C3d,g with trypsin forming C3d, resulted in reduced CR2 activity. However, because saturating amounts of monoclonal anti-C3g did not block the CR(2)-binding activity of EC3d,g, it appears unlikely that the g region of C3d,g or iC3b forms a part of the CR(2)-binding site. In addition, detergent-solubilized EC3d (C3d-OR) inhibited the CR(2)-binding activity of EC3d,g. Monocytes and neutrophils, that had been previously thought to lack CR(2) because of their inability to form EC3d rosettes, did bind EC3d,g containing greater than 5 × 10(4) C3d,g molecules per E. The finding that monocyte and neutrophil rosettes with EC3d,g were inhibited by C3d-OR, suggested that these phagocytic cells might indeed express very low numbers of CR(2), and that these CR(2) were detectable with EC3d,g and not with EC3d because C3d,g had a higher affinity for CR2 than did C3d. A fourth C3 binding site for CR(3) and conglutinin (K) was restricted to the iC3b fragment. Because of simultaneous attachment of iC3b to phagocyte CR3 and CR(3), the characteristics of iC3b binding to CR3 could only be examined with phagocytes on which the CR(1) had been blocked with anti-CR(1). Inhibition studies with EDTA and N-acetyl-D-glucosamine demonstrated a requirement for both calcium cations and carbohydrate in the binding of EC3bi to CR3 and to K. However, CR(3) differed from K in that magnesium cations were required in addition to calcium for maximum CR(3) binding activity, and NADG produced less inhibition of CR(3) activity than of K activity.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3151-3160 ◽  
Author(s):  
Diana Catt ◽  
Shannon Hawkins ◽  
Ann Roman ◽  
Wen Luo ◽  
David G. Skalnik

CCAAT displacement protein (CDP) is a transcriptional repressor that restricts expression of the gp91phox gene to mature myeloid cells. CDP interacts with multiple sites within the −450 to +12 bp human gp91phox promoter, and down-regulation of CDP DNA-binding activity is required for induction of gp91phox transcription in mature phagocytes. Truncation of the gp91phox promoter to −102 to +12 bp removes 4 CDP-binding sites and reveals a promiscuous promoter activity that is active in some nonphagocytic cells. A cis-element at −90 bp is required for derepressed transcription and serves as a binding site for multiple transcriptional activators. We now report that this element also serves as a binding site for CDP. The affinity of CDP for this element is relatively weak compared with upstream CDP-binding sites within the promoter, consistent with the promiscuous transcriptional activity exhibited by the −102 to +12 bp gp91phox promoter fragment. Further analysis of the proximal promoter reveals an additional weak-affinity CDP-binding site centered at approximately −20 bp. Overexpression of cloned CDP represses the −102 to +12 bp gp91phox promoter, indicating that these proximal CDP-binding sites are functionally significant. The constellation of transcriptional activators and a repressor that interacts with the −90 bp cis-element is identical to that observed for a promoter element at −220 bp, reflecting the highly modular organization of the gp91phoxpromoter. These studies illustrate the complex interplay between transcriptional activators and a repressor that contribute to the myeloid-restricted expression of the gp91phox gene.


1999 ◽  
Vol 19 (4) ◽  
pp. 2681-2689 ◽  
Author(s):  
Corinne Rusterholz ◽  
Patricia Corthésy Henrioud ◽  
Markus Nabholz

ABSTRACT Interleukin-2 (IL-2) responsiveness of T lymphocytes is controlled through transcription of the IL-2 receptor (IL-2R) α subunit by antigen and by IL-2 itself. IL-2 induces IL-2Rα transcription via an IL-2-responsive enhancer (IL-2rE), whose activity depends on the cooperative binding of IL-2-induced STAT5 to two sites and of constitutively active Elf-1 to a third one. Here we describe the changes in IL-2rE chromatin that occur in normal T lymphocytes upon activation of IL-2Rα expression. In cells induced to transiently express IL-2Rα with concanavalin A (which mimics antigen), none of the IL-2rE sites is occupied despite the presence of Elf-1 and STAT1, which bind to the IL-2rE in vitro. The two STAT binding sites are occupied rapidly upon IL-2 stimulation, concomitantly with STAT5 activation. Occupation of the Elf-1 binding site is delayed, although Elf-1 concentration and binding activity are not modified by IL-2. Digestion of T-cell chromatin with DNase I and micrococcal nuclease shows that IL-2 induces the appearance of nuclease-hypersensitive sites flanking the IL-2rE. Thus IL-2, in addition to activating STAT5, appears to regulate IL-2Rα transcription by making IL-2Rα chromatin accessible to transcription factors.


Sign in / Sign up

Export Citation Format

Share Document