scholarly journals Thalamic and thalamic projection abnormalities on DTI and NODDI analysis following acute concussion

Neurology ◽  
2019 ◽  
Vol 93 (14 Supplement 1) ◽  
pp. S4.2-S5
Author(s):  
James Houston ◽  
Frank Skidmore ◽  
William Monroe ◽  
Jon Amburgy ◽  
Mitchell Self

ObjectiveTo compare preseason and post-concussive MRI in a cohort of collegiate football players utilizing Diffusion Tensor Imaging (DTI) and Neurite Orientation Dispersion and Density Imaging (NODDI) post processing.BackgroundAcute post-concussive symptoms can vary in clinical characteristics and severity. However, vestibular and ocular dysfunction in particular, has been associated with poor clinical outcomes. The vestibular system comprises a complex network of projections from peripheral vestibular organs to thalamic relay systems and numerous cortical regions. The visual/oculomotor system is also complex, involving brainstem, subcortical-cortical and thalamo-cortical connections. Oculomotor deficits are thought to involve the midbrain and the visual and parietal association cortices, both of which have thalamic projections.Design/MethodsWe gathered pre-season MR diffusion weighted imaging on a cohort of 30 collegiate football players. We performed repeat imaging within 36 hours of any diagnosed concussion in the same subject cohort. DTI metrics: mean diffusivity (MD), axial diffusivity (AD), fractional anisotropy (FA), and radial diffusivity (RD) along with NODDI metric: orientation dispersion index (ODI), were analyzed for statistical comparisons between groups.Results4 subjects with pre-season MRI underwent repeat MRI within 36 hours of concussive injury. A paired t-test between these two groups using DTI and NODDI metrics showed significant (p < 0.05) decreases in: AD and MD in the left posterior thalamic radiations, FA in the column and body of the fornix, and MD in the right anterior corona radiata and superior fronto-occipital fasciculus, and a significant decrease in ODI in the anterior thalamus.ConclusionsDisruptions in the thalamus and its white matter projections may play a role in the vestibular/ocular dysfunction associated with acute concussive injury. While our numbers are small, the findings suggest that DTI and NODDI processing techniques have the capability to locate and measure grey and white matter injury patterns after concussive injury.

2021 ◽  
Vol 80 (2) ◽  
pp. 567-576
Author(s):  
Fei Han ◽  
Fei-Fei Zhai ◽  
Ming-Li Li ◽  
Li-Xin Zhou ◽  
Jun Ni ◽  
...  

Background: Mechanisms through which arterial stiffness impacts cognitive function are crucial for devising better strategies to prevent cognitive decline. Objective: To examine the associations of arterial stiffness with white matter integrity and cognition in community dwellings, and to investigate whether white matter injury was the intermediate of the associations between arterial stiffness and cognition. Methods: This study was a cross-sectional analysis on 952 subjects (aged 55.5±9.1 years) who underwent diffusion tensor imaging and measurement of brachial-ankle pulse wave velocity (baPWV). Both linear regression and tract-based spatial statistics were used to investigate the association between baPWV and white matter integrity. The association between baPWV and global cognitive function, measured as the mini-mental state examination (MMSE) was evaluated. Mediation analysis was performed to assess the influence of white matter integrity on the association of baPWV with MMSE. Results: Increased baPWV was significantly associated with lower mean global fractional anisotropy (β= –0.118, p < 0.001), higher mean diffusivity (β= 0.161, p < 0.001), axial diffusivity (β= 0.160, p < 0.001), and radial diffusivity (β= 0.147, p < 0.001) after adjustment of age, sex, and hypertension, which were measures having a direct effect on arterial stiffness and white matter integrity. After adjustment of age, sex, education, apolipoprotein E ɛ4, cardiovascular risk factors, and brain atrophy, we found an association of increased baPWV with worse performance on MMSE (β= –0.093, p = 0.011). White matter disruption partially mediated the effect of baPWV on MMSE. Conclusion: Arterial stiffness is associated with white matter disruption and cognitive decline. Reduced white matter integrity partially explained the effect of arterial stiffness on cognition.


Cephalalgia ◽  
2015 ◽  
Vol 35 (13) ◽  
pp. 1162-1171 ◽  
Author(s):  
Catherine D Chong ◽  
Todd J Schwedt

Background Specific white-matter tract alterations in migraine remain to be elucidated. Using diffusion tensor imaging (DTI), this study investigated whether the integrity of white-matter tracts that underlie regions of the “pain matrix” is altered in migraine and interrogated whether the number of years lived with migraine modifies fibertract structure. Methods Global probabilistic tractography was used to assess the anterior thalamic radiations, the corticospinal tracts and the inferior longitudinal fasciculi in 23 adults with migraine and 18 healthy controls. Results Migraine patients show greater mean diffusivity (MD) in the left and right anterior thalamic radiations, the left corticospinal tract, and the right inferior longitudinal fasciculus tract. Migraine patients also show greater radial diffusivity (RD) in the left anterior thalamic radiations, the left corticospinal tract as well as the left and right inferior longitudinal fasciculus tracts. No group fractional anisotropy (FA) differences were identified for any tracts. Migraineurs showed a positive correlation between years lived with migraine and MD in the right anterior thalamic radiations ( r = 0.517; p = 0.012) and the left corticospinal tract ( r = 0.468; p = 0.024). Conclusion Results indicate that white-matter integrity is altered in migraine and that longer migraine history is positively correlated with greater alterations in tract integrity.


2021 ◽  
Vol 26 (3) ◽  
pp. 2714-2721
Author(s):  
XIAOFENG YANG ◽  
◽  
WANMENG XIE ◽  

Our objective was to study the correlation between Diffusion tensor MR imaging (DTI) effect and white matter structural integrity, working memory in leukoaraiosis patients. 100 leukoaraiosis patients referring to the First Affiliated Hospital of Beijing Medical University from December 2018 to December 2019, were selected as study subjects and divided into four groups according to disease severity: lesion-free group, mild lesion group, moderate lesion group, and severe lesion group. All patients underwent magnetic resonance diffusion tensor imaging to collect DWI images and analyze Fractional anisotropy (FA), mean diffusivity (MD), ReHo values of white matter area under different grading. The patients’ working memory was tested via auditory verb learning test and Stroop color word test, so that correlation between white matter structural integrity and working memory can be analyzed. Results: There are statistically significant differences in FA values of the right posterior thalamic radiation, the right sagittal layer and the right superior longitudinal fasciculus, MD values of the right sagittal layer, the right cingulum bundle, the left cingulum bundle, the right inferior fasciculus fronto-occipitalis and the left inferior fasciculus frontooccipitalis, as well as instant recall, delayed recall, delayed recognition, card A (dot), card B (character), card C (color word) and SIE value (P<0.01). Correlation is shown between white matter structural integrity and working memory, gender, age, grading, disease course, recurrence interval, white matter area, and testing methods. There was a correlation between DTI effect and white matter structural integrity, working memory in leukoaraiosis patients, and leukoaraiosis patients have memory impairment.


2021 ◽  
Author(s):  
Xiaoyu Xu ◽  
Yuying Jin ◽  
Ning Pan ◽  
Muqing Cao ◽  
Jin Jing ◽  
...  

Abstract Cantonese and Mandarin are logographic languages, and the phonology is the main difference between the two languages. It is unclear whether long-term experience of Cantonese-Mandarin bilingualism will shape different brain white matter structures of pathways related to phonological processing. 30 Cantonese-Mandarin bilinguals and 30 Mandarin monolinguals completed diffusion-weighted imaging (DWI) scans and phonological processing tasks. The tractography and TBSS were used to investigate the structural differences in the bilateral superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF) and inferior fronto-occipital fasciculus (IFOF) between Cantonese-Mandarin bilinguals and Mandarin monolinguals. Post-hoc correlation analysis was conducted to investigate the relationship between the different structures with phonological processing skills. Compared to the Mandarin monolinguals, the Cantonese-Mandarin bilinguals had higher fractional anisotropy (FA) along the left ILF, higher mean diffusivity (MD) in the clusters along the temporoparietal segment of SLF (tSLF), as well as higher axial diffusivity (AD) in the right tSLF, IFOF, bilateral ILF. The mean AD of the different voxels in the right IFOF and the mean FA of the different voxels in the left ILF were positively correlated with the inverse efficiency score (IES) of the Cantonese auditory and Mandarin visual rhyming judgment tasks respectively within the bilingual group. Long-term experience of Cantonese-Mandarin bilinguals shape different brain white matter structures including right tSLF, IFOF, bilateral ILF. The bilinguals’ white matter showed higher diffusivity, especially in the axonal direction, than the monolinguals. These changes were related to bilinguals’ phonological processing.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S249-S250
Author(s):  
Seda Arslan ◽  
Tuba Şahin ◽  
Didenur Şahin ◽  
Timothea Toulopoulou

Abstract Background Psychotic disorders are characterized by neurobiological deviations, including in the macro and microstructure of white matter. White matter alterations are also seen in psychosis-proneness and in individuals who have a high risk of psychosis. For example, studies have indicated decreases in white matter integrity in the genu/forceps minor of corpus callosum (CC) in the latter populations. Anterior corona radiata (ACR) is one crucial white-matter tract connecting the anterior cingulate cortex to the striatum. Indeed, reductions in the white matter structure of anterior genu of CC significantly predict the transition from ultra-high risk to psychosis. However, there is a gap in the literature related to observing the psychosis-proneness by applying both micro and macrostructural brain analyses, and most of the microstructural white matter studies in psychosis focus on fractional anisotropy (FA) and not include mean diffusivity (MD). Thus, the current study aims to assess whether white matter deviations in CG, ACR, and CC, are associated with psychosis proneness by combining both tract-based spatial statistics (TBSS) and voxel-based morphometry (VBM) analyses in a sample of participants with psychosis proneness (PP) and without psychosis proneness (NPP). Methods The study included 53 participants (29 PP vs. 24 NPP) whose ages were between 17 and 24 years. Participants were split into two groups based on their scores on Structured Interview for Schizotypy assessment, a well-validated instrument of psychosis proneness. White matter integrity was analyzed via diffusion tensor imaging (DTI) and white matter volume (WMV) via VBM. Two sample t-test was used in GLM for both DTI and VBM analyses. FA, MD, and VMV were compared between two groups to observe micro and macro white matter structure alterations in the region of interest. Results DTI analysis revealed decreased FA values in the right ACR and right genu of the CC in the psychosis-proneness group (F(1,52)= 7.37, p= 0.009). Moreover, VBM showed a significant WMV decreases in the right CG, Brodmann areas 8, 9, and 32 in the PP group (F(1,52)= 50.85, uncorrected p&lt;0.01). However, MD did not differ between the two groups (F(1,51)= 3.65, p=0.06) Discussion These findings suggest that PP associated with decreased white matter integrity in ACR, genu of CC, and also reduced white matter volumes in the right CG, Brodmann areas 8, 9, and 32. Significant FA decreases might result from alterations in radial or axial diffusivity since we did not observe significant MD differences between two groups. The current findings suggested that participants with PP had both macro and micro white matter structure disruptions, mostly in frontal parts of the right cerebrum, compared to no PP group.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hikaru Takeuchi ◽  
Yasuyuki Taki ◽  
Rui Nouchi ◽  
Ryoichi Yokoyama ◽  
Yuka Kotozaki ◽  
...  

AbstractLead is a toxin known to harm many organs in the body, particularly the central nervous system, across an individual’s lifespan. To date, no study has yet investigated the associations between body lead level and the microstructural properties of gray matter areas, and brain activity during attention-demanding tasks. Here, utilizing data of diffusion tensor imaging, functional magnetic resonance imaging and cognitive measures among 920 typically developing young adults, we show greater hair lead levels are weakly but significantly associated with (a) increased working memory-related activity in the right premotor and pre-supplemental motor areas, (b) lower fractional anisotropy (FA) in white matter areas near the internal capsule, (c) lower mean diffusivity (MD) in the dopaminergic system in the left hemisphere and other widespread contingent areas, and (d) greater MD in the white matter area adjacent to the right fusiform gyrus. Higher lead levels were also weakly but significantly associated with lower performance in tests of high-order cognitive functions, such as the psychometric intelligence test, greater impulsivity measures, and higher novelty seeking and extraversion. These findings reflect the weak effect of daily lead level on the excitability and microstructural properties of the brain, particularly in the dopaminergic system.


2021 ◽  
Author(s):  
Szabolcs David ◽  
Lucy L Brown ◽  
Anneriet M Heemskerk ◽  
Elaine Aron ◽  
Alexander Leemans ◽  
...  

Previously, researchers used functional MRI to identify regional brain activations associated with sensory processing sensitivity (SPS), a proposed normal phenotype trait. To further validate SPS as a behavioral entity, to characterize it anatomically, and to test the usefulness in psychology of methodologies that assess axonal properties, the present study correlated SPS proxy questionnaire scores (adjusted for neuroticism) with diffusion tensor imaging measures. Participants (n=408) from the Young Adult Human Connectome Project that are free of neurologic and psychiatric disorders were investigated. We computed mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD) and fractional anisotropy (FA). A voxelwise, exploratory analysis showed that MD and RD correlated positively with SPS proxy scores in the right and left subcallosal and anterior ventral cingulum bundle, and the right forceps minor of the corpus callosum (peak Cohens D effect size = 0.269). Further analyses showed correlations throughout the entire right and left ventromedial prefrontal cortex, including the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate and arcuate fasciculus. These prefrontal regions are generally involved in emotion, reward and social processing. FA was negatively correlated with SPS proxy scores in white matter of the right premotor/motor/somatosensory/supramarginal gyrus regions, which are associated with empathy, theory of mind, primary and secondary somatosensory processing. Region of interest (ROI) analysis, based-on previous fMRI results and Freesurfer atlas-defined areas, showed small effect sizes, (+0.151 to -0.165) in white matter of the precuneus and inferior frontal gyrus. Other ROI effects were found in regions of the dorsal and ventral visual pathways and primary auditory cortex. The results reveal that in a large, diverse group of participants axonal microarchitectural differences can be identified with SPS traits that are subtle and in the range of typical behavior. The results suggest that the heightened sensory processing in people who show SPS may be influenced by the microstructure of white matter in specific neocortical regions. Although previous fMRI studies had identified most of these general neocortical regions, the DTI results put a new focus on brain areas related to attention and cognitive flexibility, empathy, emotion and low-level sensory processing, as in the primary sensory cortex. Psychological trait characterization may benefit from diffusion tensor imaging methodology by identifying influential brain systems for traits.


2015 ◽  
Vol 27 (4) ◽  
pp. 197-205 ◽  
Author(s):  
Kirsten Ann Donald ◽  
Annerine Roos ◽  
Jean-Paul Fouche ◽  
Nastassja Koen ◽  
Fleur M. Howells ◽  
...  

BackgroundNeuroimaging studies have indicated that prenatal alcohol exposure is associated with alterations in the structure of specific brain regions in children. However, the temporal and regional specificity of such changes and their behavioural consequences are less known. Here we explore the integrity of regional white matter microstructure in infants with in utero exposure to alcohol, shortly after birth.MethodsTwenty-eight alcohol-exposed and 28 healthy unexposed infants were imaged using diffusion tensor imaging sequences to evaluate white matter integrity using validated tract-based spatial statistics analysis methods. Second, diffusion values were extracted for group comparisons by regions of interest. Differences in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity were compared between groups and associations with measures from the Dubowitz neonatal neurobehavioural assessment were examined.ResultsLower AD values (p<0.05) were observed in alcohol-exposed infants in the right superior longitudinal fasciculus compared with non-exposed infants. Altered FA and MD values in alcohol-exposed neonates in the right inferior cerebellar were associated with abnormal neonatal neurobehaviour.ConclusionThese exploratory data suggest that prenatal alcohol exposure is associated with reduced white matter microstructural integrity even early in the neonatal period. The association with clinical measures reinforces the likely clinical significance of this finding. The location of the findings is remarkably consistent with previously reported studies of white matter structural deficits in older children with a diagnosis of foetal alcohol spectrum disorders.


Author(s):  
Mireille E. Kelley ◽  
Jillian E. Urban ◽  
Derek A. Jones ◽  
Elizabeth M. Davenport ◽  
Logan E. Miller ◽  
...  

OBJECTIVE The objective of this study was to characterize changes in head impact exposure (HIE) across multiple football seasons and to determine whether changes in HIE correlate with changes in imaging metrics in youth football players. METHODS On-field head impact data and pre- and postseason imaging data, including those produced by diffusion tensor imaging (DTI), were collected from youth football athletes with at least two consecutive seasons of data. ANCOVA was used to evaluate HIE variations (number of impacts, peak linear and rotational accelerations, and risk-weighted cumulative exposure) by season number. DTI scalar metrics, including fractional anisotropy, mean diffusivity, and linear, planar, and spherical anisotropy coefficients, were evaluated. A control group was used to determine the number of abnormal white matter voxels, which were defined as 2 standard deviations above or below the control group mean. The difference in the number of abnormal voxels between consecutive seasons was computed for each scalar metric and athlete. Linear regression analyses were performed to evaluate relationships between changes in HIE metrics and changes in DTI scalar metrics. RESULTS There were 47 athletes with multiple consecutive seasons of HIE, and corresponding imaging data were available in a subsample (n = 19) of these. Increases and decreases in HIE metrics were observed among individual athletes from one season to the next, and no significant differences (all p > 0.05) in HIE metrics were observed by season number. Changes in the number of practice impacts, 50th percentile impacts per practice session, and 50th percentile impacts per session were significantly positively correlated with changes in abnormal voxels for all DTI metrics. CONCLUSIONS These results demonstrate a significant positive association between changes in HIE metrics and changes in the numbers of abnormal voxels between consecutive seasons of youth football. Reducing the number and frequency of head impacts, especially during practice sessions, may decrease the number of abnormal imaging findings from one season to the next in youth football.


SLEEP ◽  
2019 ◽  
Vol 43 (3) ◽  
Author(s):  
Dae Lim Koo ◽  
Hye Ryun Kim ◽  
Hosung Kim ◽  
Joon-Kyung Seong ◽  
Eun Yeon Joo

Abstract Study Objectives Neurocognitive impairment is one of the daytime symptoms of obstructive sleep apnea (OSA). We proposed to use tract-specific statistical analysis (TSSA) to investigate whether there are fiber tract abnormalities in OSA, which may be undiscovered using voxel-based approaches, and whether such tract-specific disruptions in brain connectivity are associated with neuropsychological deficits in patients with untreated OSA. Methods We enrolled 38 patients with OSA diagnosed by overnight polysomnography, and 41 healthy sleepers. Fractional anisotropy (FA) and mean diffusivity (MD) maps were obtained from whole-brain diffusion tensor imaging, and TSSA were used to assess regional deficits of white matter tracts. All participants underwent a battery of neuropsychological tests. To evaluate the association between FA values and clinical, polysomnographic, and neuropsychological parameters in the OSA group, permutation-based tests for correlation were performed preceding cluster-based statistics. Results Compared to healthy controls, patients with OSA showed decreased values of FA in the left and right anterior thalamic radiations, and right uncinate fasciculus (UNC) (p &lt; 0.001, p = 0.005, and p = 0.008, respectively). A lower score of digit span backward was associated with lower FA values of right UNC in the OSA group (p = 0.023). The Rey Complex Figure Test copy score revealed a positive correlation with FA values in the right UNC (p = 0.010). Conclusions The TSSA method indeed identified previously unrevealed tract-specific disruptions in OSA. Furthermore, reduced FA values in the frontal lobe portion of the right UNC which has been known to be involved in working memory function were significantly associated with lower cognitive performance in patients with untreated OSA.


Sign in / Sign up

Export Citation Format

Share Document