scholarly journals Brain structure of perinatally HIV-infected patients on long-term treatment

2019 ◽  
Vol 9 (5) ◽  
pp. 433-442 ◽  
Author(s):  
Malon Van den Hof ◽  
Anne Marleen ter Haar ◽  
Matthan W.A. Caan ◽  
Rene Spijker ◽  
Johanna H. van der Lee ◽  
...  

ObjectiveWe aim to give an overview of the available evidence on brain structure and function in PHIV-infected patients (PHIV+) using long-term combination antiretroviral therapy (cART) and how differences change over time.MethodsWe conducted an electronic search using MEDLINE, Embase, and PsycINFO. We used the following selection criteria: cohort and cross-sectional studies that reported on brain imaging differences between PHIV+ of all ages who used cART for at least six months before neuroimaging and HIV-negative controls. Two reviewers independently selected studies, performed data extraction, and assessed quality of studies.ResultsAfter screening 1500 abstracts and 343 full-text articles, we identified 19 eligible articles. All included studies had a cross-sectional design and used MRI with different modalities: structural MRI (n = 7), diffusion tensor imaging (DTI) (n = 6), magnetic resonance spectroscopy (n = 5), arterial spin labeling (n = 1), and resting-state functional neuroimaging (n = 1). Studies showed considerable methodological limitations and heterogeneity, preventing us to perform meta-analyses. DTI data on white matter microstructure suggested poorer directional diffusion in cART-treated PHIV+ compared with controls. Other modalities were inconclusive.ConclusionEvidence may suggest brain structure and function differences in the population of PHIV+ on long-term cART compared with the HIV-negative population. Because of a small study population, and considerable heterogeneity and methodological limitations, the extent of brain structure and function differences on neuroimaging between groups remains unknown.

2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Nenad Stojiljković ◽  
Petar Mitić ◽  
Goran Sporiš

Purpose. The aim of this study is to reveal the effects of exercise on the brain structure and function in children, and to analyze methodological approach applied in the researches of this topic. Methods. This literature review provides an overview of important findings in this fast growing research domain. Results from cross-sectional, longitudinal, and interventional studies of the influence of exercise on the brain structure and function of healthy children are reviewed and discussed. Results. The majority of researches are done as cross sectional studies based on the exploring correlation between the level of physical activity and characteristics of brain structure and function. Results of the studies indicate that exercise has positive correlation with improved cognition and beneficial changes to brain function in children. Physically active children have greater white matter integrity in several white matter tracts (corpus callosum, corona radiata, and superior longitudinal fasciculus), have greater volume of gray matter in the hippocampus and basal ganglia than their physically inactive counterparts. The longitudinal/interventional studies also showed that exercise (mainly aerobic) improve cognitive performance of children and causes changes observed on functional magnetic resonance imaging scans (fMRI) located in prefrontal and parietal regions. Conclusion. Previous researches undoubtable proved that exercise can make positive changes of the brain structures in children, specifically the volume of the hippocampus which is the center of learning and memory. Finally the researchers agree that the most influential type of exercise on changes of brain structure and functions are the aerobic exercises. 


2021 ◽  
Vol 11 (2) ◽  
pp. 205
Author(s):  
Xiaoyou Zhang ◽  
Boyi Zong ◽  
Wenrui Zhao ◽  
Lin Li

Mind–body exercise has been proposed to confer both physical and mental health benefits. However, there is no clear consensus on the neural mechanisms underlying the improvements in health. Herein, we conducted a systematic review to reveal which brain region or network is regulated by mind–body exercise. PubMed, Web of Science, PsycINFO, SPORTDiscus, and China National Knowledge Infrastructure databases were systematically searched to identify cross-sectional and intervention studies using magnetic resonance imaging (MRI) to explore the effect of mind–body exercise on brain structure and function, from their inception to June 2020. The risk of bias for cross-sectional studies was assessed using the Joanna Briggs Institute (JBI) checklist, whereas that of interventional studies was analyzed using the Physiotherapy Evidence Database (PEDro) scale. A total of 15 studies met the inclusion criteria. Our analysis revealed that mind–body exercise modulated brain structure, brain neural activity, and functional connectivity, mainly in the prefrontal cortex, hippocampus/medial temporal lobe, lateral temporal lobe, insula, and the cingulate cortex, as well as the cognitive control and default mode networks, which might underlie the beneficial effects of such exercises on health. However, due to the heterogeneity of included studies, more randomized controlled trials with rigorous designs, similar measured outcomes, and whole-brain analyses are warranted.


2021 ◽  
Vol 17 ◽  
pp. 174480692199093
Author(s):  
Kyle Murray ◽  
Yezhe Lin ◽  
Meena M Makary ◽  
Peter G Whang ◽  
Paul Geha

Chronic low back pain (CLBP) is often treated with opioid analgesics (OA), a class of medications associated with a significant risk of misuse. However, little is known about how treatment with OA affect the brain in chronic pain patients. Gaining this knowledge is a necessary first step towards understanding OA associated analgesia and elucidating long-term risk of OA misuse. Here we study CLBP patients chronically medicated with opioids without any evidence of misuse and compare them to CLBP patients not on opioids and to healthy controls using structural and functional brain imaging. CLBP patients medicated with OA showed loss of volume in the nucleus accumbens and thalamus, and an overall significant decrease in signal to noise ratio in their sub-cortical areas. Power spectral density analysis (PSD) of frequency content in the accumbens’ resting state activity revealed that both medicated and unmedicated patients showed loss of PSD within the slow-5 frequency band (0.01–0.027 Hz) while only CLBP patients on OA showed additional density loss within the slow-4 frequency band (0.027–0.073 Hz). We conclude that chronic treatment with OA is associated with altered brain structure and function within sensory limbic areas.


2021 ◽  
Vol 13 ◽  
Author(s):  
Célia Domingos ◽  
Maria Picó-Pérez ◽  
Ricardo Magalhães ◽  
Mariana Moreira ◽  
Nuno Sousa ◽  
...  

Several studies using neuroimaging techniques have established a positive relationship between physical activity (PA) and brain structure and function in older populations. However, the use of subjective measures of PA and the lack of multimodal neuroimaging approaches have limited the understanding of this association. This study aims to explore the associations between PA and brain structure and function by objectively evaluating PA. Community-dwelling cognitively healthy older adults (without diagnosed cognitive, neurological or degenerative disease) were recruited from local health centers and local gyms. In a cross-sectional design, participants were evaluated regarding cognitive, clinical, anthropometric, physical performance, and lifestyle characteristics. A 3 T magnetic resonance imaging (MRI) was performed for structural and functional brain measures. PA time and level was assessed via a Xiaomi Mi Band 2® worn for 15 consecutive days. Participants (n = 110, after inclusion/exclusion criteria and completion of all evaluations) were 58 females (56%), with an average age of 68.42 years old (SD = 3.12), most were active. Multiple regression analysis revealed that higher time spent in vigorous PA associated with larger left parahippocampal gyrus and right hippocampus volumes. Furthermore, the analysis of the functional connectome indicated a greater functional connectivity (FC) between the frontal gyrus, cingulate gyrus, occipital inferior lobe for light, moderate, and total PA time, and sedentary time associated with lower FC in the same networks. Overall, the structural and functional findings may provide evidence on the relevant association between PA and brain health in aging.


Sign in / Sign up

Export Citation Format

Share Document