scholarly journals Long-Term Consequences of Developmental Alcohol Exposure on Brain Structure and Function: Therapeutic Benefits of Physical Activity

2012 ◽  
Vol 3 (4) ◽  
pp. 1-38 ◽  
Author(s):  
Anna Klintsova ◽  
Gillian Hamilton ◽  
Karen Boschen
2019 ◽  
Vol 9 (5) ◽  
pp. 433-442 ◽  
Author(s):  
Malon Van den Hof ◽  
Anne Marleen ter Haar ◽  
Matthan W.A. Caan ◽  
Rene Spijker ◽  
Johanna H. van der Lee ◽  
...  

ObjectiveWe aim to give an overview of the available evidence on brain structure and function in PHIV-infected patients (PHIV+) using long-term combination antiretroviral therapy (cART) and how differences change over time.MethodsWe conducted an electronic search using MEDLINE, Embase, and PsycINFO. We used the following selection criteria: cohort and cross-sectional studies that reported on brain imaging differences between PHIV+ of all ages who used cART for at least six months before neuroimaging and HIV-negative controls. Two reviewers independently selected studies, performed data extraction, and assessed quality of studies.ResultsAfter screening 1500 abstracts and 343 full-text articles, we identified 19 eligible articles. All included studies had a cross-sectional design and used MRI with different modalities: structural MRI (n = 7), diffusion tensor imaging (DTI) (n = 6), magnetic resonance spectroscopy (n = 5), arterial spin labeling (n = 1), and resting-state functional neuroimaging (n = 1). Studies showed considerable methodological limitations and heterogeneity, preventing us to perform meta-analyses. DTI data on white matter microstructure suggested poorer directional diffusion in cART-treated PHIV+ compared with controls. Other modalities were inconclusive.ConclusionEvidence may suggest brain structure and function differences in the population of PHIV+ on long-term cART compared with the HIV-negative population. Because of a small study population, and considerable heterogeneity and methodological limitations, the extent of brain structure and function differences on neuroimaging between groups remains unknown.


2011 ◽  
Vol 17 (6) ◽  
pp. 975-985 ◽  
Author(s):  
Laura Chaddock ◽  
Matthew B. Pontifex ◽  
Charles H. Hillman ◽  
Arthur F. Kramer

AbstractA growing number of schools have increasingly de-emphasized the importance of providing physical activity opportunities during the school day, despite emerging research that illustrates the deleterious relationship between low levels of aerobic fitness and neurocognition in children. Accordingly, a brief review of studies that link fitness-related differences in brain structure and brain function to cognitive abilities is provided herein. Overall, the extant literature suggests that childhood aerobic fitness is associated with higher levels of cognition and differences in regional brain structure and function. Indeed, it has recently been found that aerobic fitness level even predicts cognition over time. Given the paucity of work in this area, several avenues for future investigations are also highlighted. (JINS, 2011, 17, 975–985)


2019 ◽  
Vol 3 (4) ◽  
Author(s):  
Chelsea M. Stillman ◽  
Shannon D. Donofry ◽  
Kirk I. Erickson

Aging is associated with changes in brain structure and function with some brain regions showing more age-related deterioration than others. There is evidence that regional changes in brain structure and function may affect the functioning of other, less- age-sensitive brain regions and lead to more global changes in brain efficiency and cognitive functioning. Fortunately, emerging evidence from health neuroscience suggests that age-related brain changes and associated cognitive declines may not be inevitable. In fact, they may even be reversible. Exercise is a particularly promising health behavior known to induce changes in regional brain structure and function in older adults. However, much less is known about how exercise affects the organization of brain networks in late life. The purpose of this review is to summarize what is known to date regarding the relationships between functional connectivity, exercise, fitness, and physical activity in aging. A critical summary of this literature may reveal novel mechanisms by which physical activity influences brain health, which in turn may be leveraged to improve other aspects of functioning, including physical, cognitive, and mental health in late life.


PEDIATRICS ◽  
2019 ◽  
Vol 144 (4) ◽  
pp. e20184032 ◽  
Author(s):  
Sarah Ruth Valkenborghs ◽  
Michael Noetel ◽  
Charles H. Hillman ◽  
Michael Nilsson ◽  
Jordan J. Smith ◽  
...  

2021 ◽  
Vol 17 ◽  
pp. 174480692199093
Author(s):  
Kyle Murray ◽  
Yezhe Lin ◽  
Meena M Makary ◽  
Peter G Whang ◽  
Paul Geha

Chronic low back pain (CLBP) is often treated with opioid analgesics (OA), a class of medications associated with a significant risk of misuse. However, little is known about how treatment with OA affect the brain in chronic pain patients. Gaining this knowledge is a necessary first step towards understanding OA associated analgesia and elucidating long-term risk of OA misuse. Here we study CLBP patients chronically medicated with opioids without any evidence of misuse and compare them to CLBP patients not on opioids and to healthy controls using structural and functional brain imaging. CLBP patients medicated with OA showed loss of volume in the nucleus accumbens and thalamus, and an overall significant decrease in signal to noise ratio in their sub-cortical areas. Power spectral density analysis (PSD) of frequency content in the accumbens’ resting state activity revealed that both medicated and unmedicated patients showed loss of PSD within the slow-5 frequency band (0.01–0.027 Hz) while only CLBP patients on OA showed additional density loss within the slow-4 frequency band (0.027–0.073 Hz). We conclude that chronic treatment with OA is associated with altered brain structure and function within sensory limbic areas.


Sign in / Sign up

Export Citation Format

Share Document