scholarly journals Free-Living Physical Activity Measured With a Wearable Device Is Associated With Larger Hippocampus Volume and Greater Functional Connectivity in Healthy Older Adults: An Observational, Cross-Sectional Study in Northern Portugal

2021 ◽  
Vol 13 ◽  
Author(s):  
Célia Domingos ◽  
Maria Picó-Pérez ◽  
Ricardo Magalhães ◽  
Mariana Moreira ◽  
Nuno Sousa ◽  
...  

Several studies using neuroimaging techniques have established a positive relationship between physical activity (PA) and brain structure and function in older populations. However, the use of subjective measures of PA and the lack of multimodal neuroimaging approaches have limited the understanding of this association. This study aims to explore the associations between PA and brain structure and function by objectively evaluating PA. Community-dwelling cognitively healthy older adults (without diagnosed cognitive, neurological or degenerative disease) were recruited from local health centers and local gyms. In a cross-sectional design, participants were evaluated regarding cognitive, clinical, anthropometric, physical performance, and lifestyle characteristics. A 3 T magnetic resonance imaging (MRI) was performed for structural and functional brain measures. PA time and level was assessed via a Xiaomi Mi Band 2® worn for 15 consecutive days. Participants (n = 110, after inclusion/exclusion criteria and completion of all evaluations) were 58 females (56%), with an average age of 68.42 years old (SD = 3.12), most were active. Multiple regression analysis revealed that higher time spent in vigorous PA associated with larger left parahippocampal gyrus and right hippocampus volumes. Furthermore, the analysis of the functional connectome indicated a greater functional connectivity (FC) between the frontal gyrus, cingulate gyrus, occipital inferior lobe for light, moderate, and total PA time, and sedentary time associated with lower FC in the same networks. Overall, the structural and functional findings may provide evidence on the relevant association between PA and brain health in aging.

2019 ◽  
Vol 3 (4) ◽  
Author(s):  
Chelsea M. Stillman ◽  
Shannon D. Donofry ◽  
Kirk I. Erickson

Aging is associated with changes in brain structure and function with some brain regions showing more age-related deterioration than others. There is evidence that regional changes in brain structure and function may affect the functioning of other, less- age-sensitive brain regions and lead to more global changes in brain efficiency and cognitive functioning. Fortunately, emerging evidence from health neuroscience suggests that age-related brain changes and associated cognitive declines may not be inevitable. In fact, they may even be reversible. Exercise is a particularly promising health behavior known to induce changes in regional brain structure and function in older adults. However, much less is known about how exercise affects the organization of brain networks in late life. The purpose of this review is to summarize what is known to date regarding the relationships between functional connectivity, exercise, fitness, and physical activity in aging. A critical summary of this literature may reveal novel mechanisms by which physical activity influences brain health, which in turn may be leveraged to improve other aspects of functioning, including physical, cognitive, and mental health in late life.


2021 ◽  
Author(s):  
Laura M. Hack ◽  
Jacob Brawer ◽  
Megan Chesnut ◽  
Xue Zhang ◽  
Max Wintermark ◽  
...  

AbstractA significant number of individuals experience physical, cognitive, and mental health symptoms in the months after acute infection with SARS-CoV-2, the virus that causes COVID-19. This study assessed depressive and anxious symptoms, cognition, and brain structure and function in participants with symptomatic COVID-19 confirmed by PCR testing (n=100) approximately three months following infection, leveraging self-report questionnaires, objective neurocognitive testing, and structural and functional neuroimaging data. Preliminary results demonstrated that over 1/5 of our cohort endorsed clinically significant depressive and/or anxious symptoms, and >40% of participants had cognitive impairment on objective testing across multiple domains, consistent with ‘brain-fog’. While depression and one domain of quality of life (physical functioning) were significantly different between hospitalized and non-hospitalized participants, anxiety, cognitive impairment, and most domains of functioning were not, suggesting that the severity of SARS-CoV-2 infection does not necessarily relate to the severity of neuropsychiatric outcomes and impaired functioning in the months after infection. Furthermore, we found that the majority of participants in a subset of our cohort who completed structural and functional neuroimaging (n=15) had smaller olfactory bulbs and sulci in conjunction with anosmia. We also showed that this subset of participants had dysfunction in attention network functional connectivity and ventromedial prefrontal cortex seed-based functional connectivity. These functional imaging dysfunctions have been observed previously in depression and correlated with levels of inflammation. Our results support and extend previous findings in the literature concerning the neuropsychiatric sequelae associated with long COVID. Ongoing data collection and analyses within this cohort will allow for a more comprehensive understanding of the longitudinal relationships between neuropsychiatric symptoms, neurocognitive performance, brain structure and function, and inflammatory and immune profiles.


2019 ◽  
Vol 9 (5) ◽  
pp. 433-442 ◽  
Author(s):  
Malon Van den Hof ◽  
Anne Marleen ter Haar ◽  
Matthan W.A. Caan ◽  
Rene Spijker ◽  
Johanna H. van der Lee ◽  
...  

ObjectiveWe aim to give an overview of the available evidence on brain structure and function in PHIV-infected patients (PHIV+) using long-term combination antiretroviral therapy (cART) and how differences change over time.MethodsWe conducted an electronic search using MEDLINE, Embase, and PsycINFO. We used the following selection criteria: cohort and cross-sectional studies that reported on brain imaging differences between PHIV+ of all ages who used cART for at least six months before neuroimaging and HIV-negative controls. Two reviewers independently selected studies, performed data extraction, and assessed quality of studies.ResultsAfter screening 1500 abstracts and 343 full-text articles, we identified 19 eligible articles. All included studies had a cross-sectional design and used MRI with different modalities: structural MRI (n = 7), diffusion tensor imaging (DTI) (n = 6), magnetic resonance spectroscopy (n = 5), arterial spin labeling (n = 1), and resting-state functional neuroimaging (n = 1). Studies showed considerable methodological limitations and heterogeneity, preventing us to perform meta-analyses. DTI data on white matter microstructure suggested poorer directional diffusion in cART-treated PHIV+ compared with controls. Other modalities were inconclusive.ConclusionEvidence may suggest brain structure and function differences in the population of PHIV+ on long-term cART compared with the HIV-negative population. Because of a small study population, and considerable heterogeneity and methodological limitations, the extent of brain structure and function differences on neuroimaging between groups remains unknown.


2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Nenad Stojiljković ◽  
Petar Mitić ◽  
Goran Sporiš

Purpose. The aim of this study is to reveal the effects of exercise on the brain structure and function in children, and to analyze methodological approach applied in the researches of this topic. Methods. This literature review provides an overview of important findings in this fast growing research domain. Results from cross-sectional, longitudinal, and interventional studies of the influence of exercise on the brain structure and function of healthy children are reviewed and discussed. Results. The majority of researches are done as cross sectional studies based on the exploring correlation between the level of physical activity and characteristics of brain structure and function. Results of the studies indicate that exercise has positive correlation with improved cognition and beneficial changes to brain function in children. Physically active children have greater white matter integrity in several white matter tracts (corpus callosum, corona radiata, and superior longitudinal fasciculus), have greater volume of gray matter in the hippocampus and basal ganglia than their physically inactive counterparts. The longitudinal/interventional studies also showed that exercise (mainly aerobic) improve cognitive performance of children and causes changes observed on functional magnetic resonance imaging scans (fMRI) located in prefrontal and parietal regions. Conclusion. Previous researches undoubtable proved that exercise can make positive changes of the brain structures in children, specifically the volume of the hippocampus which is the center of learning and memory. Finally the researchers agree that the most influential type of exercise on changes of brain structure and functions are the aerobic exercises. 


Pain Medicine ◽  
2010 ◽  
Vol 11 (8) ◽  
pp. 1183-1197 ◽  
Author(s):  
Neilly Buckalew ◽  
Marc W. Haut ◽  
Howard Aizenstein ◽  
Lisa Morrow ◽  
Subashan Perera ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Adam C. Raikes ◽  
Natalie S. Dailey ◽  
Brittany Forbeck ◽  
Anna Alkozei ◽  
William D. S. Killgore

Background: Mild traumatic brain injuries (mTBIs) are associated with novel or worsened sleep disruption. Several studies indicate that daily morning blue light therapy (BLT) is effective for reducing post-mTBI daytime sleepiness and fatigue. Studies demonstrating changes in brain structure and function following BLT are limited. The present study's purpose is to identify the effect of daily morning BLT on brain structure and functional connectivity and the association between these changes and self-reported change in post-mTBI daytime sleepiness.Methods: A total of 62 individuals recovering from a mTBI were recruited from two US cities to participate in a double-blind placebo-controlled trial. Eligible individuals were randomly assigned to undergo 6 weeks of 30 min daily morning blue or placebo amber light therapy (ALT). Prior to and following treatment all individuals completed a comprehensive battery that included the Epworth Sleepiness Scale as a measure of self-reported daytime sleepiness. All individuals underwent a multimodal neuroimaging battery that included anatomical and resting-state functional magnetic resonance imaging. Atlas-based regional change in gray matter volume (GMV) and region-to-region functional connectivity from baseline to post-treatment were the primary endpoints for this study.Results: After adjusting for pre-treatment GMV, individuals receiving BLT had greater GMV than those receiving amber light in 15 regions of interest, including the right thalamus and bilateral prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with greater GMV in 74 ROIs, covering many of the same general regions. Likewise, BLT was associated with increased functional connectivity between the thalamus and both prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with increased functional connectivity between attention and cognitive control networks as well as decreased connectivity between visual, motor, and attention networks (all FDR corrected p < 0.05).Conclusions: Following daily morning BLT, moderate to large increases in both gray matter volume and functional connectivity were observed in areas and networks previously associated with both sleep regulation and daytime cognitive function, alertness, and attention. Additionally, these findings were associated with improvements in self-reported daytime sleepiness. Further work is needed to identify the personal characteristics that may selectively identify individuals recovering from a mTBI for whom BLT may be optimally beneficial.


2021 ◽  
Vol 11 (2) ◽  
pp. 205
Author(s):  
Xiaoyou Zhang ◽  
Boyi Zong ◽  
Wenrui Zhao ◽  
Lin Li

Mind–body exercise has been proposed to confer both physical and mental health benefits. However, there is no clear consensus on the neural mechanisms underlying the improvements in health. Herein, we conducted a systematic review to reveal which brain region or network is regulated by mind–body exercise. PubMed, Web of Science, PsycINFO, SPORTDiscus, and China National Knowledge Infrastructure databases were systematically searched to identify cross-sectional and intervention studies using magnetic resonance imaging (MRI) to explore the effect of mind–body exercise on brain structure and function, from their inception to June 2020. The risk of bias for cross-sectional studies was assessed using the Joanna Briggs Institute (JBI) checklist, whereas that of interventional studies was analyzed using the Physiotherapy Evidence Database (PEDro) scale. A total of 15 studies met the inclusion criteria. Our analysis revealed that mind–body exercise modulated brain structure, brain neural activity, and functional connectivity, mainly in the prefrontal cortex, hippocampus/medial temporal lobe, lateral temporal lobe, insula, and the cingulate cortex, as well as the cognitive control and default mode networks, which might underlie the beneficial effects of such exercises on health. However, due to the heterogeneity of included studies, more randomized controlled trials with rigorous designs, similar measured outcomes, and whole-brain analyses are warranted.


Sign in / Sign up

Export Citation Format

Share Document