Pre- and Intraoperative Tractographic Evaluation of Corticospinal Tract Shift

Neurosurgery ◽  
2011 ◽  
Vol 69 (3) ◽  
pp. 696-705 ◽  
Author(s):  
Andrea Romano ◽  
Giancarlo D'Andrea ◽  
Luigi Fausto Calabria ◽  
Valeria Coppola ◽  
Camilla Rossi Espagnet ◽  
...  

Abstract BACKGROUND: Magnetic resonance with diffusion tensor image (DTI) may be able to estimate trajectories compatible with subcortical tracts close to brain lesions. A limit of DTI is brain shifting (movement of the brain after dural opening and tumor resection). OBJECTIVE: To calculate the brain shift of trajectories compatible with the corticospinal tract (CST) in patients undergoing glioma resection and predict the shift directions of CST. METHODS: DTI was acquired in 20 patients and carried out through 12 noncollinear directions. Dedicated software “merged” all sequences acquired with tractographic processing and the whole dataset was sent to the neuronavigation system. Preoperative, after dural opening (in 11) and tumor resection (in all) DTI acquisitions were performed to evaluate CST shifting. The extent of shifting was considered as the maximum distance between the preoperative and intraoperative contours of the trajectories. RESULTS: An outward shift of CST was observed in 8 patients and an inward shift in 10 patients during surgery. In the remaining 2 patients, no intraoperative displacement was detected. Only peritumoral edema showed a statistically significant correlation with the amount of shift. In those patients in which DTI was acquired after dural opening as well (11 patients), an outward shifting of CST was evident in that phase. CONCLUSION: The use of intraoperative DTI demonstrated brain shifting of the CST. DTI evaluation of white matter tracts can be used during surgical procedures only if updated with intraoperative acquisitions.

Author(s):  
Jair Leopoldo Raso

Abstract Introduction The precise identification of anatomical structures and lesions in the brain is the main objective of neuronavigation systems. Brain shift, displacement of the brain after opening the cisterns and draining cerebrospinal fluid, is one of the limitations of such systems. Objective To describe a simple method to avoid brain shift in craniotomies for subcortical lesions. Method We used the surgical technique hereby described in five patients with subcortical neoplasms. We performed the neuronavigation-guided craniotomies with the conventional technique. After opening the dura and exposing the cortical surface, we placed two or three arachnoid anchoring sutures to the dura mater, close to the edges of the exposed cortical surface. We placed these anchoring sutures under microscopy, using a 6–0 mononylon wire. With this technique, the cortex surface was kept close to the dura mater, minimizing its displacement during the approach to the subcortical lesion. In these five cases we operated, the cortical surface remained close to the dura, anchored by the arachnoid sutures. All the lesions were located with a good correlation between the handpiece tip inserted in the desired brain area and the display on the navigation system. Conclusion Arachnoid anchoring sutures to the dura mater on the edges of the cortex area exposed by craniotomy constitute a simple method to minimize brain displacement (brain-shift) in craniotomies for subcortical injuries, optimizing the use of the neuronavigation system.


Neurology ◽  
2018 ◽  
Vol 91 (23 Supplement 1) ◽  
pp. S17.1-S17
Author(s):  
Haruo Nakayama ◽  
Yu Hiramoto ◽  
Yuriko Numata ◽  
Satoshi Fujita ◽  
Nozomi Hirai ◽  
...  

ObjectiveTo evaluate the relationship between functional anisotropy (FA) and neuropsychological evaluation in concussion.MethodsDiffusion tensor MRI included FA of the Brain and neuropsychological evaluation were conducted on 10 patients with concussion who were diagnosed from April 2017 to March 2018. FA was extracted from 2 regions of interest in Corpus callosum (CC) and corticospinal tract (CT). Detailed neuropsychological testing with an emphasis on Working memory (WM) and Processing speed (PS) was also conducted. The FA value in that 2 regions were compared between the 2 groups of 5 patients (group F) who failed either in WM or PS and 5 cases (group NF) who did not admit it.ResultsMean FA values in CC and CT in the Group F were 0.70 and 0.52. Mean FA values in CC and CT in the Group NF were 0.48 and 0.55.ConclusionsOur result suggests that the FA value of CC did not explain the significant fluctuation of the neuropsychological function. However, FA value in CT were shown to explain the fluctuation of WM and PS.


Author(s):  
Daria Krivosheya ◽  
Ganesh Rao ◽  
Sudhakar Tummala ◽  
Vinodh Kumar ◽  
Dima Suki ◽  
...  

Abstract Introduction Preserving the integrity of the corticospinal tract (CST) while maximizing the extent of tumor resection is one of the key principles of brain tumor surgery to prevent new neurologic deficits. Our goal was to determine the impact of the use of perioperative diffusion tensor imaging (DTI) fiber-tracking protocols for location of the CSTs, in conjunction with intraoperative direct electrical stimulation (DES) on patient neurologic outcomes. The role of combining DES and CST shift in intraoperative magnetic resonance imaging (iMRI) to enhance extent of resection (EOR) has not been studied previously. Methods A total of 53 patients underwent resection of tumors adjacent to the motor gyrus and the underlying CST between June 5, 2009, and April 16, 2013. All cases were performed in the iMRI (BrainSuite 1.5 T). Preoperative DTI mapping and intraoperative cortical and subcortical DES including postoperative DTI mapping were performed in all patients. There were 32 men and 21 women with 40 high-grade gliomas (76%), 4 low-grade gliomas (8%), and 9 (17%) metastases. Thirty-four patients (64%) were newly diagnosed, and 19 (36%) had a previous resection. There were 31 (59%) right-sided and 22 (42%) left-sided tumors. Eighteen patients (34%) had a re-resection after the first intraoperative scan. Most patients had motor-only mapping, and one patient had both speech and motor mapping. Relative to the resection margin, the CST after the first iMRI was designated as having an outward shift (OS), inward shift (IS), or no shift (NS). Results A gross total resection (GTR) was achieved in 41 patients (77%), subtotal resection in 4 (7.5%), and a partial resection in 8 (15%). Eighteen patients had a re-resection, and the mean EOR increased from 84% to 95% (p = 0.002). Of the 18 patients, 7 had an IS, 8 an OS, and in 3 NS was noted. More patients in the OS group had a GTR compared with the IS or NS groups (p = 0.004). Patients were divided into four groups based on the proximity of the tumor to the CST as measured from the preoperative scan. Group 1 (32%) included patients whose tumors were 0 to 5 mm from the CST based on preoperative scans; group 2 (28%), 6 to 10 mm; group 3 (13%), 11 to 15 mm; and group 4 (26%), 16 to 20 mm, respectively. Patients in group 4 had fewer neurologic complications compared with other groups at 1 and 3 months postoperatively (p = 0.001 and p = 0.007, respectively) despite achieving a similar degree of resection (p = 0.61). Furthermore, the current of intraoperative DES was correlated to the distance of the tumor to the CST, and the regression equation showed a close linear relationship between the two parameters. Conclusions Combining information about intraoperative CST and DES in the iMRI can enhance resection in brain tumors (77% had a GTR). The relative relationship between the positions of the CST to the resection cavity can be a dynamic process that could further influence the surgeon's decision about the stimulation parameters and EOR. Also, the patients with an OS of the CST relative to the resection cavity had a GTR comparable with the other groups.


2005 ◽  
Vol 102 (4) ◽  
pp. 664-672 ◽  
Author(s):  
Kyousuke Kamada ◽  
Tomoki Todo ◽  
Yoshitaka Masutani ◽  
Shigeki Aoki ◽  
Kenji Ino ◽  
...  

Object. The aim of this study was better preoperative planning and direct application to intraoperative procedures through accurate coregistration of diffusion-tensor (DT) imaging—based tractography results and anatomical three-dimensional magnetic resonance images and subsequent importation of the combined images to a neuronavigation system (functional neuronavigation). Methods. Six patients with brain lesions adjacent to the corticospinal tract (CST) were studied. During surgery, direct fiber stimulation was used to evoke motor responses to confirm the accuracy of CST depicted on functional neuronavigation. In three patients, stimulation of the supposed CST elicited the expected motor evoked potentials. In the other three, stimulation at the resection borders more than 1 cm away from the supposed CST showed no motor response. All patients underwent appropriate tumor resection with preservation of the CST. Conclusions. Integration of the DT imaging—based tractography information into a traditional neuronavigation system demonstrated spatial relationships between lesions and the CST, allowing for the avoidance of tract injury during lesion resection. Direct fiber stimulation was used for real-time reliable white matter mapping, which served to adjust for any discrepancy between the neuronavigation system data and potentially shifted positions of the brain structures. The combination of these techniques enabled the authors to identify accurate positions of the CST during surgery and to accomplish optimal tumor resections.


NeuroImage ◽  
2000 ◽  
Vol 11 (5) ◽  
pp. S626
Author(s):  
T. Schormann ◽  
S. Henn ◽  
R. Kleiser ◽  
P. Stoerig ◽  
K. Zilles

2021 ◽  
Vol 15 ◽  
Author(s):  
Shin Tai Chong ◽  
Xinrui Liu ◽  
Hung-Wen Kao ◽  
Chien-Yuan Eddy Lin ◽  
Chih-Chin Heather Hsu ◽  
...  

Diffusion Tensor Imaging (DTI) tractography has been widely used in brain tumor surgery to ensure thorough resection and minimize functional damage. However, due to enhanced anisotropic uncertainty in the area with peritumoral edema, diffusion tractography is generally not practicable leading to high false-negative results in neural tracking. In this study, we evaluated the usefulness of the neurite orientation dispersion and density imaging (NODDI) derived tractography for investigating structural heterogeneity of the brain in patients with brain tumor. A total of 24 patients with brain tumors, characterized by peritumoral edema, and 10 healthy counterparts were recruited from 2014 to 2021. All participants underwent magnetic resonance imaging. Moreover, we used the images obtained from the healthy participants for calibrating the orientation dispersion threshold for NODDI-derived corticospinal tract (CST) reconstruction. Compared to DTI, NODDI-derived tractography has a great potential to improve the reconstruction of fiber tracking through regions of vasogenic edema. The regions with edematous CST in NODDI-derived tractography demonstrated a significant decrease in the intracellular volume fraction (VFic, p < 0.000) and an increase in the isotropic volume fraction (VFiso, p < 0.014). Notably, the percentage of the involved volume of the concealed CST and lesion-to-tract distance could reflect the motor function of the patients. After the tumor resection, four patients with 1–5 years follow-up were showed subsidence of the vasogenic edema and normal CST on DTI tractography. NODDI-derived tractography revealed tracts within the edematous area and could assist neurosurgeons to locate the neural tracts that are otherwise not visualized by conventional DTI tractography.


2013 ◽  
Vol 34 (4) ◽  
pp. E1 ◽  
Author(s):  
Kalil G. Abdullah ◽  
Daniel Lubelski ◽  
Paolo G. P. Nucifora ◽  
Steven Brem

Diffusion tensor imaging (DTI) is increasingly used in the resection of both high- and low-grade gliomas. Whereas conventional MRI techniques provide only anatomical information, DTI offers data on CNS connectivity by enabling visualization of important white matter tracts in the brain. Importantly, DTI allows neurosurgeons to better guide their surgical approach and resection. Here, the authors review basic scientific principles of DTI, include a primer on the technology and image acquisition, and outline the modality's evolution as a frequently used tool for glioma resection. Current literature supporting its use is summarized, highlighting important clinical studies on the application of DTI in preoperative planning for glioma resection, preoperative diagnosis, and postoperative outcomes. The authors conclude with a review of future directions for this technology.


Neurosurgery ◽  
2013 ◽  
Vol 73 (5) ◽  
pp. 797-807 ◽  
Author(s):  
Svatopluk Ostrý ◽  
Tomáš Belšan ◽  
Jakub Otáhal ◽  
Vladimír Beneš ◽  
David Netuka

Abstract BACKGROUND: Primary brain tumors in motor eloquent areas are associated with high-risk surgical procedures because of potentially permanent and often disabling motor deficits. Intraoperative primary motor cortex mapping and corticospinal tract (CST) monitoring are well-developed and reliable techniques. Imaging of the CST by diffusion tensor tractography (DTT) is also feasible. OBJECTIVE: To evaluate the practical value of 3.0T intraoperative MRI (iMRI) with intraoperative DTT (iDTT) in surgery close to the CST, and to compare high-field iDTT with intraoperative neurophysiological CST mapping during glioma and metastasis resection in a routine setting. METHODS: Twenty-five patients (13 males, 12 females, median 47 years) were enrolled prospectively from June 2010 to June 2012. Patients were included if they had a solitary supratentorial intracerebral lesion compressing or infiltrating the CST according to preoperative MRI. Subcortical CST mapping was performed by monopolar (cathodal) stimulation (500 Hz, 400 μs, 5 pulses). CST DTT was made both at preoperative and intraoperative 3.0T MRI. Subcortical motor-evoked potential threshold current and probe-CST distance were recorded at 155 points before and at 103 points after iMRI. Current-distance correlations were performed both for pre-iMRI and for post-iMRI data. RESULTS: The correlation coefficient pre-iMRI was R = 0.470 (P < .001); post-iMRI, the correlation coefficient was R = 0.338 (P < .001). MRI radical resection was achieved in 17 patients (68%), subtotal in 5 (24%), and partial in 3 (12%). Postoperative paresis developed in 8 patients (32%); the paresis was permanent in 1 case (4%). CONCLUSION: The linear current-distance correlation was found both in pre-iMRI and in post-iMRI data. Intraoperative image distortion appeared in 36%. Neurophysiological subcortical mapping remains superior to DTT. Combining these 2 methods in selected cases can help increase the safety of tumor resection close to the CST.


Sign in / Sign up

Export Citation Format

Share Document