The zygotic control of Drosophila pair-rule gene expression. II. Spatial repression by gap and pair-rule gene products

Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 673-683 ◽  
Author(s):  
S.B. Carroll ◽  
S.H. Vavra

We examined gene expression patterns in certain single and double pair-rule mutant embryos to determine which of the largely repressive pair-rule gene interactions are most likely to be direct and which interactions are probably indirect. From these studies we conclude that: (i) hairy+ and even-skipped (eve+) regulate the fushi tarazu (ftz) gene; (ii) eve+ and runt+ regulate the hairy gene; (iii) runt+ regulates the eve gene; but, (iv) runt does not regulate the ftz gene pattern, and hairy does not regulate the eve gene pattern. These pair-rule interactions are not sufficient, however, to explain the periodicity of the hairy and eve patterns, so we examined specific gap gene mutant combinations to uncover their regulatory effects on these two genes. Our surprising observation is that the hairy and eve genes are expressed in embryos where the three key gap genes hunchback (hb), Kruppel (Kr), and knirps (kni) have been removed, indicating that these gap genes are not essential to activate the pair-rule genes. In fact, we show that in the absence of either hb+ or kni+, or both gap genes, the Kr+ product represses hairy expression. These results suggest that gap genes repress hairy expression in the interstripe regions, rather than activate hairy expression in the stripes. The molecular basis of pair-rule gene regulation by gap genes must involve some dual control mechanisms such that combinations of gap genes affect pair-rule transcription in a different manner than a single gap gene.

Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 663-672 ◽  
Author(s):  
S.H. Vavra ◽  
S.B. Carroll

The examination of pair-rule gene expression in wild-type and segmentation mutant embryos has identified many, but not necessarily all, of the elements of the regulatory system that establish their periodic patterns. Here we have conducted a new type of search for previously unknown regulators of these genes by examining pair-rule gene expression in blastoderm embryos lacking parts of or entire chromosomes. This method has the advantage of direct inspection of abnormal pair-rule gene patterns without relying upon mutagenesis or interpretation of larval phenotypes for the identification of segmentation genes. From these experiments we conclude that: (i) most zygotically required regulators of the fushi tarazu (ftz), even-skipped (eve) and hairy (h) pair-rule genes have been identified, except for one or more loci we have uncovered on chromosome arm 2L; (ii) the repression of the ftz and eve genes in the anterior third of the embryo is under maternal, not zygotic control; and (iii) there are no general zygotically required activators of pair-rule gene expression. The results suggest that the molecular basis of pair-rule gene regulation can be pursued with greater confidence now that most key trans-acting factors are already in hand.


Development ◽  
1990 ◽  
Vol 110 (3) ◽  
pp. 759-767 ◽  
Author(s):  
R. Warrior ◽  
M. Levine

A key step in Drosophila segmentation is the establishment of periodic patterns of pair-rule gene expression in response to gap gene products. From an examination of the distribution of gap and pair-rule proteins in various mutants, we conclude that the on/off periodicity of pair-rule stripes depends on both the exact concentrations and combinations of gap proteins expressed in different embryonic cells. It has been suggested that the distribution of gap gene products depends on cross-regulatory interactions among these genes. Here we provide evidence that autoregulation also plays an important role in this process since there is a reduction in the levels of Kruppel (Kr) RNA and protein in a Kr null mutant. Once initiated by the gap genes each pair-rule stripe is bell shaped and has ill-defined margins. By the end of the fourteenth nuclear division cycle, the stripes of the pair-rule gene even-skipped (eve) sharpen and polarize, a process that is essential for the precisely localized expression of segment polarity genes. This sharpening process appears to depend on a threshold response of the eve promoter to the combinatorial action of eve and a second pair-rule gene hairy. The eve and hairy expression patterns overlap but are out of register and the cells of maximal overlap form the anterior margin of the polarized eve stripe. We propose that the relative placement of the eve and hairy stripes may be an important factor in the initiation of segment polarity.


Development ◽  
2001 ◽  
Vol 128 (18) ◽  
pp. 3459-3472 ◽  
Author(s):  
Nipam H. Patel ◽  
David C. Hayward ◽  
Sabbi Lall ◽  
Nicole R. Pirkl ◽  
Daniel DiPietro ◽  
...  

While the expression patterns of segment polarity genes such as engrailed have been shown to be similar in Drosophila melanogaster and Schistocerca americana (grasshopper), the expression patterns of pair-rule genes such as even-skipped are not conserved between these species. This might suggest that the factors upstream of pair-rule gene expression are not conserved across insect species. We find that, despite this, many aspects of the expression of the Drosophila gap gene hunchback are shared with its orthologs in the grasshoppers S. americana and L. migratoria. We have analyzed both mRNA and protein expression during development, and find that the grasshopper hunchback orthologs appear to have a conserved role in early axial patterning of the germ anlagen and in the specification of gnathal and thoracic primordia. In addition, distinct stepped expression levels of hunchback in the gnathal/thoracic domains suggest that grasshopper hunchback may act in a concentration-dependent fashion (as in Drosophila), although morphogenetic activity is not set up by diffusion to form a smooth gradient. Axial patterning functions appear to be performed entirely by zygotic hunchback, a fundamental difference from Drosophila in which maternal and zygotic hunchback play redundant roles. In grasshoppers, maternal hunchback activity is provided uniformly to the embryo as protein and, we suggest, serves a distinct role in distinguishing embryonic from extra-embryonic cells along the anteroposterior axis from the outset of development – a distinction made in Drosophila along the dorsoventral axis later in development. Later hunchback expression in the abdominal segments is conserved, as are patterns in the nervous system, and in both Drosophila and grasshopper, hunchback is expressed in a subset of extra-embryonic cells. Thus, while the expected domains of hunchback expression are conserved in Schistocerca, we have found surprising and fundamental differences in axial patterning, and have identified a previously unreported domain of expression in Drosophila that suggests conservation of a function in extra-embryonic patterning.


Development ◽  
1994 ◽  
Vol 120 (6) ◽  
pp. 1671-1683 ◽  
Author(s):  
C. Tsai ◽  
J.P. Gergen

The Drosophila Runt protein is a member of a new family of transcriptional regulators that have important roles in processes extending from pattern formation in insect embryos to leukemogenesis in humans. We used ectopic expression to investigate runt's function in the pathway of Drosophila segmentation. Transient over-expression of runt under the control of a Drosophila heat-shock promoter caused stripe-specific defects in the expression patterns of the pair-rule genes hairy and even-skipped but had a more uniform effect on the secondary pair-rule gene fushi tarazu. Surprisingly, the expression of the gap segmentation genes, which are upstream of runt in the segmentation hierarchy was also altered in hs/runt embryos. A subset of these effects were interpreted as due to an antagonistic effect of runt on transcriptional activation by the maternal morphogen bicoid. In support of this, expression of synthetic reporter gene constructs containing oligomerized binding sites for the Bicoid protein was reduced in hs/runt embryos. Finally, genetic experiments demonstrated that regulation of gap gene expression by runt is a normal component of the regulatory program that generates the segmented body pattern of the Drosophila embryo.


Development ◽  
1998 ◽  
Vol 125 (19) ◽  
pp. 3765-3774 ◽  
Author(s):  
X. Wu ◽  
R. Vakani ◽  
S. Small

We have combined genetic experiments and a targeted misexpression approach to examine the role of the gap gene giant (gt) in patterning anterior regions of the Drosophila embryo. Our results suggest that gt functions in the repression of three target genes, the gap genes Kruppel (Kr) and hunchback (hb), and the pair-rule gene even-skipped (eve). The anterior border of Kr, which lies 4–5 nucleus diameters posterior to nuclei that express gt mRNA, is set by a threshold repression mechanism involving very low levels of gt protein. In contrast, gt activity is required, but not sufficient for formation of the anterior border of eve stripe 2, which lies adjacent to nuclei that express gt mRNA. We propose that gt's role in forming this border is to potentiate repressive interaction(s) mediated by other factor(s) that are also localized to anterior regions of the early embryo. Finally, gt is required for repression of zygotic hb expression in more anterior regions of the embryo. The differential responses of these target genes to gt repression are critical for the correct positioning and maintenance of segmentation stripes, and normal anterior development.


Development ◽  
1991 ◽  
Vol 113 (2) ◽  
pp. 419-430 ◽  
Author(s):  
R. Sommer ◽  
D. Tautz

Drosophila and Musca both belong to the group of higher dipteran flies and show morphologically a very similar early development. However, these two species are evolutionary separated by at least 100 million years. This presents the opportunity for a comparative analysis of segmentation gene expression across a large evolutionary distance in a very similar embryonic background. We have analysed in detail the early expression of the maternal gene bicoid, the gap genes hunchback, Kruppel, knirps and tailless, the pair-rule gene hairy, the segment-polarity gene engrailed and the homoeotic gene Ultrabithorax. We show that the primary expression domains of these genes are conserved, while some secondary expression aspects have diverged. Most notable is the finding of hunchback expression in 11–13 stripes shortly before gastrulation, as well as a delayed expression of terminal domains of various genes. We conclude that the early developmental gene hierarchy, as it has been defined in Drosophila, is evolutionary conserved in Musca domestica.


Development ◽  
1991 ◽  
Vol 111 (4) ◽  
pp. 1121-1135 ◽  
Author(s):  
S.M. Parkhurst ◽  
D. Ish-Horowicz

We have used the hunchback (hb) gap-gene promoter to drive ectopic expression of the pair-rule genes fushi tarazu (ftz), even-skipped (eve) and hairy (h). Unexpectedly, flies transformed with such constructs are viable, despite spatial and temporal mis-regulation of pair-rule expression caused by the fusion genes. We show that fusion gene expression is transcriptionally regulated, such that ectopic expression is suppressed when pattern is established, and present evidence indicating that interstripe hb-ftz expression is repressed by eve. These results are considered in terms of redundant control of pair-rule gene striping. We also discuss the potential dangers of using mis-regulated gene expression to analyse normal function.


2021 ◽  
pp. 002203452110120
Author(s):  
C. Gluck ◽  
S. Min ◽  
A. Oyelakin ◽  
M. Che ◽  
E. Horeth ◽  
...  

The parotid, submandibular, and sublingual glands represent a trio of oral secretory glands whose primary function is to produce saliva, facilitate digestion of food, provide protection against microbes, and maintain oral health. While recent studies have begun to shed light on the global gene expression patterns and profiles of salivary glands, particularly those of mice, relatively little is known about the location and identity of transcriptional control elements. Here we have established the epigenomic landscape of the mouse submandibular salivary gland (SMG) by performing chromatin immunoprecipitation sequencing experiments for 4 key histone marks. Our analysis of the comprehensive SMG data sets and comparisons with those from other adult organs have identified critical enhancers and super-enhancers of the mouse SMG. By further integrating these findings with complementary RNA-sequencing based gene expression data, we have unearthed a number of molecular regulators such as members of the Fox family of transcription factors that are enriched and likely to be functionally relevant for SMG biology. Overall, our studies provide a powerful atlas of cis-regulatory elements that can be leveraged for better understanding the transcriptional control mechanisms of the mouse SMG, discovery of novel genetic switches, and modulating tissue-specific gene expression in a targeted fashion.


2018 ◽  
Vol 5 (8) ◽  
pp. 180458 ◽  
Author(s):  
Eva Jiménez-Guri ◽  
Karl R. Wotton ◽  
Johannes Jaeger

Gap genes are involved in segment determination during early development of the vinegar fly Drosophila melanogaster and other dipteran insects (flies, midges and mosquitoes). They are expressed in overlapping domains along the antero-posterior (A–P) axis of the blastoderm embryo. While gap domains cover the entire length of the A–P axis in Drosophila, there is a region in the blastoderm of the moth midge Clogmia albipunctata , which lacks canonical gap gene expression. Is a non-canonical gap gene functioning in this area? Here, we characterize tarsal-less ( tal ) in C. albipunctata . The homologue of tal in the flour beetle Tribolium castaneum (called milles-pattes, mlpt ) is a bona fide gap gene. We find that Ca-tal is expressed in the region previously reported as lacking gap gene expression. Using RNA interference, we study the interaction of Ca-tal with gap genes. We show that Ca-tal is regulated by gap genes, but only has a very subtle effect on tailless (Ca-tll), while not affecting other gap genes at all. Moreover, cuticle phenotypes of Ca-tal depleted embryos do not show any gap phenotype. We conclude that Ca-tal is expressed and regulated like a gap gene, but does not function as a gap gene in C. albipunctata .


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Erik Clark ◽  
Michael Akam

The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles.


Sign in / Sign up

Export Citation Format

Share Document