Fibroblast growth factor during mesoderm induction in the early chick embryo

Development ◽  
1990 ◽  
Vol 109 (2) ◽  
pp. 387-393 ◽  
Author(s):  
E. Mitrani ◽  
Y. Gruenbaum ◽  
H. Shohat ◽  
T. Ziv

A chick genomic clone that reveals a high degree of homology to the mammalian and Xenopus bFGF gene has been isolated. The pattern of expression of bFGF has been examined during early chick embryogenesis. RNA blot analysis revealed that chick bFGF is already transcribed at pregastrula stages. Immunolabeling analysis indicated that bFGF protein is present at these early developmental stages and is distributed evenly in the epiblast, hypoblast and marginal zone of the chick blastula. Substances that can inhibit FGF action were applied to early chick blastoderms grown in vitro under defined culture conditions (DCM). Both heparin and suramin were capable of blocking the formation of mesodermal structures in a dose-dependent manner. Our results indicate that FGF-like substances may need to be present for axial structures to develop although they may be acting earlier during the induction of non-axial mesoderm.

Zygote ◽  
2006 ◽  
Vol 14 (3) ◽  
pp. 181-187 ◽  
Author(s):  
R.M. Garcia-Garcia ◽  
V. Dominguez ◽  
A. Gonzalez-Bulnes ◽  
A. Veiga-Lopez ◽  
M.J. Cocero

SummaryThis study evaluated the final output and quality of in vitro produced blastocysts derived from in vivo recovered sheep embryos cultured at various early developmental stages to blastocyst. A total of 270 embryos were recovered from the oviduct, at different days of the early luteal phase, and were classified into three different developmental stages: 2- to 4-cell (n = 93); 5- to 8-cell (n = 92) and 9- to 12-cell (n = 85). The effect of culture conditions was studied, at the same time, by randomly allocating the embryos to one of four groups: three groups of culture with fresh oviduct monolayers (2, 4 and 5 days old) and a fourth group with 2-day monolayers derived from frozen-thawed oviduct cells. Two control groups were established: first, embryos cultured in semi-defined medium (n = 29) and, second, blastocysts obtained in vivo and cryopreserved (n = 43). Influence on blastocyst yield of embryo developmental stage at the start of culture was statistically significant (p < 0.001). Two- to four-cell embryos showed a significantly lower developmental rate (67.7%) than the 5- to 8-cell (83.6%; p < 0.001) and 9- to 12-cell groups (90.5%; p < 0.0001) and lower quality in terms of blastocyst cryotolerance (56.0 vs. 83.7%; p < 0.005). There were no detected effects relating to the age or handling of the monolayer on the embryo developmental rate, but the day of blastocyst appearance was different between embryos cultured on monolayers derived from fresh or frozen-thawed cells (p < 0.0001); the main influence was on the group of 9- to 12-cell embryos (p < 0.0001). Current results confirm the temporal sensitivities of sheep embryos to in vitro culture, regardless of the culture conditions.


1999 ◽  
Vol 161 (2) ◽  
pp. 289-298
Author(s):  
MC Soares ◽  
JL Servely ◽  
C Puissant ◽  
P Bolifraud ◽  
MC Lacroix ◽  
...  

We report the ability of sheep placental cotyledonary cells, isolated at different periods of pregnancy (40 to 90 days) to produce ovine chorionic somatomammotrophin (oCS) in in vitro culture conditions. This oCS production increased gradually with stage of pregnancy. Endogenous oCS net production by isolated placental cells was increased, in a dose-dependent manner, by addition of recombinant oCS (roCS). This effect was not observed after addition of recombinant ovine growth hormone. The roCS effect was more potent on cells collected during early pregnancy. Specific immunoprecipitation of oCS revealed that roCS treatment was associated with an increased dose-dependent incorporation of [35S]methionine-[35S]cysteine. These findings provide evidence that oCS may act in a paracrine/autocrine manner to up-regulate its own production during early gestation. We suggest that this autoregulation may be associated with morphological and functional differentiation of the trophoblast during the growth of the placenta.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


1984 ◽  
Vol 107 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Itaru Kojima ◽  
Etsuro Ogata ◽  
Hiroshi Inano ◽  
Bun-ichi Tamaoki

Abstract. Incubation of 18-hydroxycorticosterone with the sonicated mitochondrial preparation of bovine adrenal glomerulosa tissue leads to the production of aldosterone, as measured by radioimmunoassay. The in vitro production of aldosterone from 18-hydroxycorticosterone requires both molecular oxygen and NADPH, and is inhibited by carbon monoxide. Cytochrome P-450 inhibitors such as metyrapone, SU 8000. SU 10603, SKF 525A, amphenone B and spironolactone decrease the biosynthesis of aldosterone from 18-hydroxycorticosterone. These results support the conclusion that the final reaction in aldosterone synthesis from 18-hydroxycorticosterone is catalyzed by an oxygenase, but not by 18-hydroxysteroid dehydrogenase. By the same preparation, the production of [3H]aldosterone but not [3H]18-hydroxycorticosterone from [1,2-3H ]corticosterone is decreased in a dose-dependent manner by addition of non-radioactive 18-hydroxycorticosterone.


This trial research was performed to discuss the immune-influence of Melaleuca leucadendra ‘paper-bark tree’ dried leaves which is an important medical plant known in many regions in the world. The leaves were dissolved in a mixture of (ethanol + water) (3:1) mixture, then filtered, evaporated and dried under reduced pressure to obtain leaves extract. The macrophages of blood derived origin were provided from rats and mixed with three different leaves extracts doses in tissue culture plates and incubated then stained with fluorescent acridine orange and examined under fluorescent microscope to assess the phagocytic and killing potency. The wells contents were aspirated and assayed for nitric oxide and interleukin-2 levels. The results displayed an obvious increase in phagocytic, killing performance as well as nitric oxide and IL-2 level production than control in a dose dependent manner. The obtained results suggested the immune-stimulant impact of the paper-bark tree leaves.


2001 ◽  
Vol 91 (6) ◽  
pp. 2703-2712 ◽  
Author(s):  
Stephen M. Johnson ◽  
Julia E. R. Wilkerson ◽  
Daniel R. Henderson ◽  
Michael R. Wenninger ◽  
Gordon S. Mitchell

Brain stem preparations from adult turtles were used to determine how bath-applied serotonin (5-HT) alters respiration-related hypoglossal activity in a mature vertebrate. 5-HT (5–20 μM) reversibly decreased integrated burst amplitude by ∼45% ( P < 0.05); burst frequency decreased in a dose-dependent manner with 20 μM abolishing bursts in 9 of 13 preparations ( P < 0.05). These 5-HT-dependent effects were mimicked by application of a 5-HT1A agonist, but not a 5-HT1B agonist, and were abolished by the broad-spectrum 5-HT antagonist, methiothepin. During 5-HT (20 μM) washout, frequency rebounded to levels above the original baseline for 40 min ( P < 0.05) and remained above baseline for 2 h. A 5-HT3 antagonist (tropesitron) blocked the post-5-HT rebound and persistent frequency increase. A 5-HT3 agonist (phenylbiguanide) increased frequency during and after bath application ( P < 0.05). When phenylbiguanide was applied to the brain stem of brain stem/spinal cord preparations, there was a persistent frequency increase ( P < 0.05), but neither spinal-expiratory nor -inspiratory burst amplitude were altered. The 5-HT3receptor-dependent persistent frequency increase represents a unique model of plasticity in vertebrate rhythm generation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin N. Nelson ◽  
Savannah G. Beakley ◽  
Sierra Posey ◽  
Brittney Conn ◽  
Emma Maritz ◽  
...  

AbstractCryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xuxing Shen ◽  
Chao Wu ◽  
Meng Lei ◽  
Qing Yan ◽  
Haoyang Zhang ◽  
...  

AbstractCarfilzomib, a second-generation proteasome inhibitor, has significantly improved the survival rate of multiple myeloma (MM) patients, but its clinical application is still restricted by drug resistance and cardiotoxicity. Here, we identified a novel proteasome inhibitor, D395, and assessed its efficacy in treating MM as well as its cardiotoxicity at the preclinical level. The activities of purified and intracellular proteasomes were measured to determine the effect of D395 on the proteasome. CCK-8 and flow cytometry experiments were designed to evaluate the effects of D395 on cell growth and apoptosis. The effects of D395 and carfilzomib on serum enzyme activity, echocardiography features, cardiomyocyte morphology, and hERG channels were also compared. In our study, D395 was highly cytotoxic to MM cell lines and primary MM cells but not normal cells, and it was well tolerated in vivo. Similar to carfilzomib, D395 inhibited osteoclast differentiation in a dose-dependent manner. In particular, D395 exhibited lower cardiotoxicity than carfilzomib in all experiments. In conclusion, D395 is a novel irreversible proteasome inhibitor that has remarkable anti-MM activity and mild cardiotoxicity in vitro and in vivo.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1784
Author(s):  
Matthias Schilde ◽  
Dirk von Soosten ◽  
Liane Hüther ◽  
Susanne Kersten ◽  
Ulrich Meyer ◽  
...  

Methane (CH4) from ruminal feed degradation is a major pollutant from ruminant livestock, which calls for mitigation strategies. The purpose of the present 4 × 2 factorial arrangement was to investigate the dose–response relationships between four doses of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) and potential synergistic effects with low (LC) or high (HC) concentrate feed proportions (CFP) on CH4 reduction as both mitigation approaches differ in their mode of action (direct 3-NOP vs. indirect CFP effects). Diet substrates and 3-NOP were incubated in a rumen simulation technique to measure the concentration and production of volatile fatty acids (VFA), fermentation gases as well as substrate disappearance. Negative side effects on fermentation regarding total VFA and gas production as well as nutrient degradability were observed for neither CFP nor 3-NOP. CH4 production decreased from 10% up to 97% in a dose-dependent manner with increasing 3-NOP inclusion rate (dose: p < 0.001) but irrespective of CFP (CFP × dose: p = 0.094). Hydrogen gas accumulated correspondingly with increased 3-NOP dose (dose: p < 0.001). In vitro pH (p = 0.019) and redox potential (p = 0.066) varied by CFP, whereas the latter fluctuated with 3-NOP dose (p = 0.01). Acetate and iso-butyrate (mol %) decreased with 3-NOP dose, whereas iso-valerate increased (dose: p < 0.001). Propionate and valerate varied inconsistently due to 3-NOP supplementation. The feed additive 3-NOP was proven to be a dose-dependent yet effective CH4 inhibitor under conditions in vitro. The observed lack of additivity of increased CFP on the CH4 inhibition potential of 3-NOP needs to be verified in future research testing further diet types both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document