XY female mice resulting from a heritable mutation in the primary testis-determining gene, Tdy

Development ◽  
1990 ◽  
Vol 109 (3) ◽  
pp. 635-646 ◽  
Author(s):  
R. Lovell-Badge ◽  
E. Robertson

Chimeric mice constructed with XY embryonic stem (ES) cells that had been multiply infected with a retroviral vector were used in a genetic screen to look for mutations affecting the sex determination pathway in mice. From a small number of chimeras screened one was identified that gave rise to a low proportion of XY females amongst his offspring. Analysis of the segregating patterns of retroviral insertions demonstrated that the mutation was found in a subset of the offspring derived from one originally infected ES cell. However, the mutation appeared to have occurred subsequent to the infection. Some of the XY females proved to be fertile, and the mutant phenotype was found to segregate exclusively with the Y chromosome. Analysis of the offspring also confirmed the absence of any retroviral insertion that could be correlated with the mutation. Further characterisation of the Y chromosome carrying the mutation by karyotypic analysis, and by Southern blotting with a range of Y-specific DNA probes suggested that there has been no gross deletion or rearrangement of the Y carrying the mutation. There also appeared to be no loss of Y-specific gene functions apart from that of testis determination. Moreover, the mutation is complemented by Sxr', the minimum portion of the mouse Y known to carry Tdy. From the phenotype and deduced location of the mutation, we conclude that it is within the Tdy locus. This is the first such mutation to be described in mice.

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
mohsen hosseinkhani ◽  
Hossein Hosseinkhani ◽  
Ali Khademhosseini

Transplantation of embryonic stem (ES) cells into infracted myocardium has been shown to preserve left ventricular function in rodents. Before application of ES cell therapy in humans, however, it is critical to perform pre-clinical studies in large animals such as primates. Characteristics of cynomolgus monkey ES cells are similar with those of human ES cells, but quite different from those of mouse ES cells. Differentiation of Embryonic stem (ES) cells into cardiac myocytes requires activation of a cardiac-specific gene program. Histone acetytrans-ferases (HATs) and Histone deactylases (HDACs) govern gene expression patterns by being recruited to the target genes through association with specific transcription factors. One of the HATs, p300, serves as a coactivator of cardiac-specific transcription factors such as GATA-4. The HAT activity of p300 is required for actylation and DNA binding of GATA-4 and its full transcription activity as well as for promotion of a transcriptionally active chromatin configuration. The role of HATs and HDACs in post-translational modification of GATA-4 during the differentiation of monkey ES cells into cardiac myocytes remained unknown. In an ES cell model of developing embryonic bodies, an acetylated form of GATA-4 and its DNA binding increased concomitantly with the expression of p300 during the differentiation of ES cells into cardiac myocytes. Treatment of ES cells with trichostatin A (TSA), a specific HDAC inhibitor, induced acetylation of histone-3/4 near GATA sites within the atrial natriuretic factor promoter. In addition, TSA augmented the increase in an acetylated form of GATA-4 and its DNA binding during the ES cell differentiation. TSA facilitate the expression of endogenous cardiac β-myosing heavy chain during the differentiation. These findings demonstrate that acetylation of GATA-4 as well as of histone are involved in the differentiation of monkey ES cells into cardiac myocytes.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Yick W Fong ◽  
Jaclyn J Ho ◽  
Carla Inouye ◽  
Robert Tjian

Acquisition of pluripotency is driven largely at the transcriptional level by activators OCT4, SOX2, and NANOG that must in turn cooperate with diverse coactivators to execute stem cell-specific gene expression programs. Using a biochemically defined in vitro transcription system that mediates OCT4/SOX2 and coactivator-dependent transcription of the Nanog gene, we report the purification and identification of the dyskerin (DKC1) ribonucleoprotein complex as an OCT4/SOX2 coactivator whose activity appears to be modulated by a subset of associated small nucleolar RNAs (snoRNAs). The DKC1 complex occupies enhancers and regulates the expression of key pluripotency genes critical for self-renewal in embryonic stem (ES) cells. Depletion of DKC1 in fibroblasts significantly decreased the efficiency of induced pluripotent stem (iPS) cell generation. This study thus reveals an unanticipated transcriptional role of the DKC1 complex in stem cell maintenance and somatic cell reprogramming.


1995 ◽  
Vol 44 (3) ◽  
pp. 205-210 ◽  
Author(s):  
Otoya UEDA ◽  
Kouichi JISHAGE ◽  
Nobuo KAMADA ◽  
Satomi UCHIDA ◽  
Hiroshi SUZUKI

1990 ◽  
Vol 10 (12) ◽  
pp. 6755-6758
Author(s):  
B R Stanton ◽  
S W Reid ◽  
L F Parada

We have disrupted one allele of the N-myc locus in mouse embryonic stem (ES) cells by using homologous recombination techniques and have obtained germ line transmission of null N-myc ES cell lines with transmission of the null N-myc allele to the offspring. The creation of mice with a deficient N-myc allele will allow the generation of offspring bearing null N-myc alleles in both chromosomes and permit study of the role that this proto-oncogene plays in embryonic development.


Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 157-165 ◽  
Author(s):  
R. S. P. Beddington ◽  
P. Rashbass ◽  
V. Wilson

Mouse embryos that are homozygous for the Brachyury (T) deletion die at mid-gestation. They have prominent defects in the notochord, the allantois and the primitive streak. Expression of the T gene commences at the onset of gastrulation and is restricted to the primitive streak, mesoderm emerging from the streak, the head process and the notochord. Genetic evidence has suggested that there may be an increasing demand for T gene function along the rostrocaudal axis. Experiments reported here indicate that this may not be the case. Instead, the gradient in severity of the T defect may be caused by defective mesoderm cell movements, which result in a progressive accumulation of mesoderm cells near the primitive streak. Embryonic stem (ES) cells which are homozygous for the T deletion have been isolated and their differentiation in vitro and in vivo compared with that of heterozygous and wild-type ES cell lines. In +/+ ↔ T/T ES cell chimeras the Brachyury phenotype is not rescued by the presence of wild-type cells and high level chimeras show most of the features characteristic of intact T/T mutants. A few offspring from blastocysts injected with T/T ES cells have been born, several of which had greatly reduced or abnormal tails. However, little or no ES cell contribution was detectable in these animals, either as coat colour pigmentation or by isozyme analysis. Inspection of potential +/+ ↔ T/T ES cell chimeras on the 11th or 12th day of gestation, stages later than that at which intact T/T mutants die, revealed the presence of chimeras with caudal defects. These chimeras displayed a gradient of ES cell colonisation along the rostrocaudal axis with increased colonisation of caudal regions. In addition, the extent of chimerism in ectodermal tissues (which do not invaginate during gastrulation) tended to be higher than that in mesodermal tissues (which are derived from cells invaginating through the primitive streak). These results suggest that nascent mesoderm cells lacking the T gene are compromised in their ability to move away from the primitive streak. This indicates that one function of the T genemay be to regulate cell adhesion or cell motility properties in mesoderm cells. Wild-type cells in +/+ ↔ T/T chimeras appear to move normally to populate trunk and head mesoderm, suggesting that the reduced motility in T/T cells is a cell autonomous defect


Development ◽  
2002 ◽  
Vol 129 (2) ◽  
pp. 539-549 ◽  
Author(s):  
Carrie A. Adelman ◽  
Subrata Chattopadhyay ◽  
James J. Bieker

Erythroid cell-specific gene regulation during terminal differentiation is controlled by transcriptional regulators, such as EKLF and GATA1, that themselves exhibit tissue-restricted expression patterns. Their early expression, already in evidence within multipotential hematopoietic cell lines, has made it difficult to determine what extracellular effectors and transduction mechanisms might be directing the onset of their own transcription during embryogenesis. To circumvent this problem, we have taken the novel approach of investigating whether the ability of embryonic stem (ES) cells to mimic early developmental patterns of cellular expression during embryoid body (EB) differentiation can address this issue. We first established conditions whereby EBs could form efficiently in the absence of serum. Surprisingly, in addition to mesoderm, these cells expressed hemangioblast and hematopoietic markers. However, they did not express the committed erythroid markers EKLF and GATA1, nor the terminally differentiated β-like globin markers. Using this system, we determined that EB differentiation in BMP4 was necessary and sufficient to recover EKLF and GATA1 expression and could be further stimulated by the inclusion of VEGF, SCF, erythropoietin and thyroid hormone. EBs were competent to respond to BMP4 only until day 4 of differentiation, which coincides with the normal onset of EKLF expression. The direct involvement of the BMP/Smad pathway in this induction process was further verified by showing that erythroid expression of a dominant negative BMP1B receptor or of the inhibitory Smad6 protein prevented induction of EKLF or GATA1 even in the presence of serum. Although Smad1, Smad5 and Smad8 are all expressed in the EBs, BMP4 induction of EKLF and GATA1 transcription is not immediate. These data implicate the BMP/Smad induction system as being a crucial pathway to direct the onset of EKLF and GATA1 expression during hematopoietic differentiation and demonstrate that EB differentiation can be manipulated to study induction of specific genes that are expressed early within a lineage.


2004 ◽  
Vol 5 (3) ◽  
pp. 219-226 ◽  
Author(s):  
Satoko Arai ◽  
Christina Minjares ◽  
Seiho Nagafuchi ◽  
Toru Miyazaki

The manipulation of a specific gene in NOD mice, the best animal model for insulin-dependent diabetes mellitus (IDDM), must allow for the precise characterization of the functional involvement of its encoded molecule in the pathogenesis of the disease. Although this has been attempted by the cross-breeding of NOD mice with many gene knockout mice originally created on the 129 or C57BL/6 strain background, the interpretation of the resulting phenotype(s) has often been confusing due to the possibility of a known or unknown disease susceptibility locus (e.g.,Iddlocus) cosegregating with the targeted gene from the diabetes-resistant strain. Therefore, it is important to generate mutant mice on a pure NOD background by using NOD-derived embryonic stem (ES) cells. By using the NOD ES cell line established by Nagafuchi and colleagues in 1999 (FEBSLett., 455, 101–104), the authors reexamined various conditions in the context of cell culture, DNA transfection, and blastocyst injection, and achieved a markedly improved transmission efficiency of these NOD ES cells into the mouse germ line. These modifications will enable gene targeting on a “pure” NOD background with high efficiency, and contribute to clarifying the physiological roles of a variety of genes in the disease course of IDDM.


2006 ◽  
Vol 18 (8) ◽  
pp. 839 ◽  
Author(s):  
Steven L. Stice ◽  
Nolan L. Boyd ◽  
Sujoy K. Dhara ◽  
Brian A. Gerwe ◽  
David W. Machacek ◽  
...  

Human and non-human primate embryonic stem (ES) cells are invaluable resources for developmental studies, pharmaceutical research and a better understanding of human disease and replacement therapies. In 1998, subsequent to the establishment of the first monkey ES cell line in 1995, the first human ES cell line was developed. Later, three of the National Institute of Health (NIH) lines (BG01, BG02 and BG03) were derived from embryos that would have been discarded because of their poor quality. A major challenge to research in this area is maintaining the unique characteristics and a normal karyotype in the NIH-registered human ES cell lines. A normal karyotype can be maintained under certain culture conditions. In addition, a major goal in stem cell research is to direct ES cells towards a limited cell fate, with research progressing towards the derivation of a variety of cell types. We and others have built on findings in vertebrate (frog, chicken and mouse) neural development and from mouse ES cell research to derive neural stem cells from human ES cells. We have directed these derived human neural stem cells to differentiate into motoneurons using a combination of developmental cues (growth factors) that are spatially and temporally defined. These and other human ES cell derivatives will be used to screen new compounds and develop innovative cell therapies for degenerative diseases.


Blood ◽  
2006 ◽  
Vol 107 (4) ◽  
pp. 1265-1275 ◽  
Author(s):  
Abby L. Olsen ◽  
David L. Stachura ◽  
Mitchell J. Weiss

Embryonic stem (ES) cells exhibit the remarkable capacity to become virtually any differentiated tissue upon appropriate manipulation in culture, a property that has been beneficial for studies of hematopoiesis. Until recently, the majority of this work used murine ES cells for basic research to elucidate fundamental properties of blood-cell development and establish methods to derive specific mature lineages. Now, the advent of human ES cells sets the stage for more applied pursuits to generate transplantable cells for treating blood disorders. Current efforts are directed toward adapting in vitro hematopoietic differentiation methods developed for murine ES cells to human lines, identifying the key interspecies differences in biologic properties of ES cells, and generating ES cell-derived hematopoietic stem cells that are competent to repopulate adult hosts. The ultimate medical goal is to create patient-specific and generic ES cell lines that can be expanded in vitro, genetically altered, and differentiated into cell types that can be used to treat hematopoietic diseases.


2002 ◽  
Vol 92 (1) ◽  
pp. 288-296 ◽  
Author(s):  
Jiang-Yong Min ◽  
Yinke Yang ◽  
Kimber L. Converso ◽  
Lixin Liu ◽  
Qin Huang ◽  
...  

Massive loss of cardiac myocytes after myocardial infarction (MI) is a common cause of heart failure. The present study was designed to investigate the improvement of cardiac function in MI rats after embryonic stem (ES) cell transplantation. MI in rats was induced by ligation of the left anterior descending coronary artery. Cultured ES cells used for cell transplantation were transfected with the marker green fluorescent protein (GFP). Animals in the treated group received intramyocardial injection of ES cells in injured myocardium. Compared with the MI control group injected with an equivalent volume of the cell-free medium, cardiac function in ES cell-implanted MI animals was significantly improved 6 wk after cell transplantation. The characteristic phenotype of engrafted ES cells was identified in implanted myocardium by strong positive staining to sarcomeric α-actin, cardiac α-myosin heavy chain, and troponin I. GFP-positive cells in myocardium sectioned from MI hearts confirmed the survival and differentiation of engrafted cells. In addition, single cells isolated from cell-transplanted MI hearts showed rod-shaped GFP-positive myocytes with typical striations. The present data demonstrate that ES cell transplantation is a feasible and novel approach to improve ventricular function in infarcted failing hearts.


Sign in / Sign up

Export Citation Format

Share Document