scholarly journals Establishment of the axis in chordates: facts and speculations

Development ◽  
1997 ◽  
Vol 124 (12) ◽  
pp. 2285-2296 ◽  
Author(s):  
H. Eyal-Giladi

A master plan for the early development of all chordates is proposed. The radial symmetry of the chordate ovum is changed at or after fertilization into a bilateral symmetry by an external signal. Until now two alternative triggers, sperm entry and gravity, have been demonstrated. It is suggested that a correlation exists between the amount of yolk stored in the egg and the mechanism used for axialization. The speed at which axialization of the embryo proper takes place depends on the translocation speed of maternal determinants from the vegetal pole towards the future dorsoposterior side of the embryo. On arrival at their destination, the activated determinants form, in all chordates, an induction center homologous to the amphibian ‘Nieuwkoop center’, which induces the formation of ‘Spemann's organizer’. On the basis of the above general scenario, a revision is proposed of the staging of some embryonic types, as well as of the identification of germ layer and the spaces between them.

1941 ◽  
Vol s2-82 (327) ◽  
pp. 377-440
Author(s):  
H. BARRACLOUGH FELL

1. The first cleavage may be either equal, or markedly unequal; when it is equal the next segmentation affects both blastomeres; when it is unequal the larger blastomere is believed to give rise to three cells, and the smaller remains undivided till the next cleavage. 2. At the eight-cell stage there are two quartets of blastomeres. The upper quartet, micromeres, occupy the animal pole. The lower quartet, macromeres, occupy the vegetal pole. 3. The blastula comprises micromeres and macromeres, and the blastocoel is small and becomes eccentric. No cilia are developed. 4. The gastrula is formed by the shallow imagination of the macromeres, accompanied by an extensive process of epiboly affecting the micromeres. More marked epiboly of cells on two sides of the blastomere produces in the early stages two crests which later disappear. These may indicate a trace of bilateral symmetry. Epiblast comes to lie on solid mes-hypoblast. The archenteron is transient, and gives rise to no structures. The blastopore occupies the position of the definitive mouth. 5. No larva ever forms, nor is there any vestige of a larval stage. 6. The solid gastrula is converted into the adult by assuming a radial symmetry directly, with no intermediate bilaterally symmetrical form, unless the two epibolic crests are regarded as vestiges of larval symmetry. 7. The podia appear as solid outgrowths, in which the hydrocoelic cavity develops by splitting. 8. The definitive enteron appears as a split extending upward from the ventral surface through the solid hypoblast. 9. The young ophiuroid leaves the egg before the appearance of the general body cavity, and moves about, but does not at first take food. 10. The general coelomic body cavity and the perihaemal cavity develop by splitting in a mass of mesenchyme derived from the outer layers of mes-hypoblast. 11. The formation of the skeletal system is delayed till the stage of between two and three arm-segments. 12. The development of the skeleton follows closely that described for Amphiura squamata. 13. The tooth is shown to originate independently of the torus angularis; its rudiments comprise nine symmetrically disposed spicules. 14. The terminal plate arises later than the radials, and has a distinctive ‘primitive structure’. 15. The spine is shown to have a different development to that of the tooth, and therefore would seem to have no connexion with the latter in phylogeny or ontogeny. 16. It is suggested that the aberrant early stages are to be correlated with the retarding effect of the yolk mass present in the egg during ontogeny. The aberrant features may have had a different origin in phylogeny. 17. It is suggested that the simultaneous appearance in ontogeny of homologous organs situated at equal radial distances from the centre is to be explained in terms of hormonic activity. 18. It is concluded that evolution has considerably affected the early ontogeny without leaving its mark on phylogeny. The adult thus conforms to its class, the young form does not.


2014 ◽  
Vol 369 (1648) ◽  
pp. 20130348 ◽  
Author(s):  
Lena C. Hileman

A striking aspect of flowering plant (angiosperm) diversity is variation in flower symmetry. From an ancestral form of radial symmetry (polysymmetry, actinomorphy), multiple evolutionary transitions have contributed to instances of non-radial forms, including bilateral symmetry (monosymmetry, zygomorphy) and asymmetry. Advances in flowering plant molecular phylogenetic research and studies of character evolution as well as detailed flower developmental genetic studies in a few model species (e.g. Antirrhinum majus , snapdragon) have provided a foundation for deep insights into flower symmetry evolution. From phylogenetic studies, we have a better understanding of where during flowering plant diversification transitions from radial to bilateral flower symmetry (and back to radial symmetry) have occurred. From developmental studies, we know that a genetic programme largely dependent on the functional action of the CYCLOIDEA gene is necessary for differentiation along the snapdragon dorsoventral flower axis. Bringing these two lines of inquiry together has provided surprising insights into both the parallel recruitment of a CYC -dependent developmental programme during independent transitions to bilateral flower symmetry, and the modifications to this programme in transitions back to radial flower symmetry, during flowering plant evolution.


Development ◽  
1958 ◽  
Vol 6 (3) ◽  
pp. 486-490
Author(s):  
S. Løvtrup ◽  
A. Pigon

According to the hypothesis advanced by Løvtrup (1958) the supply of oxygen is one of the factors responsible for the determination of bilateral symmetry in amphibian embryos. The protein coat covering the outside of the egg is known to have a very low permeability (Holtfreter, 1943), and it was suggested in the hypothesis that the formation of the grey crescent consists in a stretching of this coat by which the permeability is increased (cf. the work of Dalcq & Dollander (1948) and of Dollander & Melnotte (1952) on permeability of Nile blue), in this way the radial symmetry of the egg is changed to a bilateral symmetry from a metabolic point of view. As a consequence of the increase in permeability those oxidative, energy-supplying processes which are associated with gastrulation are enabled to proceed at a higher rate at one side of the egg.


2001 ◽  
Vol 75 (1) ◽  
pp. 34-45 ◽  
Author(s):  
Ewa Roniewicz ◽  
Jarosław Stolarski

The Early Carnian (Upper Triassic) phaceloid coral originally described by Volz (1896) asHexastraea fritschi, type species ofQuenstedtiphylliaMelnikova, 1975, reproduced asexually by “Taschenknospung” (pocket-budding), a process documented herein for the first time. This type of budding is recognized only in the Amphiastraeidae, a family thus far recorded only from Jurassic-Cretaceous strata. Similar to amphiastraeids,Quenstedtiphyllia fritschi(Volz, 1896) has separate septal calcification centers and a mid-septal zone built of serially arranged trabeculae. The most important discriminating characters of the new amphiastraeid subfamily Quenstedtiphylliinae are one-zonalendotheca and radial symmetry of the corallite in the adult stage (in contrast to two-zonal and bilateral symmetry in the adult stage in Amphiastraeinae).Quenstedtiphyllia fritschishares several primitive skeletal characters (plesiomorphies) with representatives of Triassic Zardinophyllidae and, possibly, Paleozoic plerophylline rugosans: e.g., thick epithecal wall and strongly bilateral early blastogenetic stages with the earliest corallite having one axial initial septum. To interpret the phylogenetic status of amphiastraeid corals, we performed two analyses using plerophylline rugosans and the solitary scleractinianProtoheterastraea, respectively, as the outgroups. The resulting phylogenetic hypotheses support grouping the Zardinophyllidae with the Amphiastraeidae in the clade Pachythecaliina (synapomorphy: presence of pachytheca). Taschenknospung is considered an autapomorphy for the Amphiastraeidae. This study is the first attempt to analyze the relationships of the Triassic corals cladistically.


Nematology ◽  
2011 ◽  
Vol 13 (7) ◽  
pp. 761-772 ◽  
Author(s):  
Verônica Da Fonsêca-Genevois ◽  
Nic Smol ◽  
Tânia Nara Bezerra

Abstract Lavareda decraemerae gen. n., sp. n. is characterised by a cheilostom with a sclerotised ring bearing six anterior projections, a funnel-shaped to tubular stegostom, a large unispiral amphid with wide groove and males with a single precloacal setiform sensillum and 19 tubular supplements in a continuous series. The new species is similar to Cricolaimus coronatus in having the cheilostom consisting of a cuticularised ring with anterior projections. Re-examination of C. elongatus revealed clear differences to the new species, the former showing a bilateral symmetry anteriorly with a lateral axis: the lips are merged into one large dorsal and one large ventral lip with elongated inner and outer labial sensilla and the cheilostom has a cuticularised oblique ring, higher dorsally and ventrally than laterally, with two anteriorly directed claw-like projections, one mid-dorsal and one mid-ventral, whereas the new species has a radial symmetry with low lips with inner and outer labial papillae indistinct and a cheilostom with a cuticularised ring with six anteriorly directed projections, thereby justifying the proposal of Lavareda gen. n. to accommodate the new species from Brazil and L. coronatus comb. n. (= C. coronatus). An emended diagnosis of Cricolaimus is given. This is the first record of a species belonging to the Rhadinematidae colonising an artificial substrate.


Development ◽  
1994 ◽  
Vol 120 (11) ◽  
pp. 3093-3104 ◽  
Author(s):  
H. Nishida

Unfertilized eggs of the ascidian Halocynthia roretzi are radially symmetrical along the animal- vegetal axis. After fertilization, ooplasmic segregation results in formation of an anterior-posterior axis horizontally, and eggs become bilaterally symmetrical. When 8–15% of the cytoplasm of the posterior- vegetal region of the egg was removed after the second phase of ooplasmic segregation, most of the embryos completed gastrulation but developed into radialized larvae along the animal-vegetal axis with no apparent anterior-posterior axis. Removal of cytoplasm from other regions did not affect formation of this latter axis. The cleavage pattern of the embryos that were deficient in posterior- vegetal cytoplasm (PVC) exhibited radial symmetry instead of the complicated bilateral symmetry of normal embryos. Detailed comparisons of cleavage patterns revealed the duplication of the anterior cleavage pattern in the originally posterior halves of the PVC-deficient embryos. The PVC-deficent larvae lacked muscle cells, which are normally derived from the posterior blastomeres. Examination of the developmental fates of the early blastomeres of the PVC-deficient embryos revealed that all of the vegetal blastomeres had assumed anterior fates. These results suggest that the PVC-deficient embryos are totally anteriorized. When posterior-vegetal cytoplasm was transplanted to the anterior-vegetal position of PVC-deficient eggs, the axial deficiency was overcome, and reversal of the anterior-posterior axis was observed. The results of transplantation of posterior-vegetal cytoplasm to the anterior-vegetal position in normal eggs demonstrated that formation of the anterior structure is suppressed by posterior-vegetal cytoplasm. These results suggest that posterior fate is specified by the presence of posterior-vegetal cytoplasm, while anterior fate is specified by the absence of posterior-vegetal cytoplasm. Thus, posterior-vegetal cytoplasm determines the anterior-posterior axis by generating the posterior cleavage pattern and conferring posterior fates on cells, as well as by inhibiting anterior fates that would otherwise occur by default.


Zygote ◽  
1994 ◽  
Vol 2 (3) ◽  
pp. 213-220 ◽  
Author(s):  
E.E. Brown ◽  
K.M. Margelot ◽  
M.V. Danilchik

SummaryDorsal–ventral patterning in the Xenopus egg becomes established midway through the first cell cycle during a 30° rotation of the subcortical yolk mass relative to the egg cortex. This rotation of symmetrisation is microtubule dependent, and its direction is thought to be cued by the usually eccentric sperm centrosome. The fact that parthenogenetically activated eggs also undergo a directed rotation, despite the absence of a sperm centrosome, suggests that an endogenous asymmetry in the unfertilised egg supports the directed polymerisation of microtubules in the vegetal cortex, in the way that an eccentric sperm centrosome would in fertilised eggs. Consistent with this idea, we noticed that the maturation spot is usually located an average of more than 15° from the geometric centre of the pigmented animal hemisphere. In parthenogenetically activated eggs, this eccentric maturation spot can be used to predict the direction of rotation. Although in most fertilised eggs the yolk mass rotates toward the sperm entry point (SEP) meridian, occasionally this relationship is perturbed significantly; in such eggs, the maturation spot is never on the same side of the egg as the SEP. In oocytes tilted 90° from upright during maturation in vitro, the maturation spot developed 15° or more from the centre of the pigmented hemisphere, always displaced towards the point on the equator that was up during maturation. This experimentally demonstrated lability is consistent with an off-axis oocyte orientation during oogenesis determining its eccentric maturation spot position, and, in turn, its endogenous rotational bias.


2007 ◽  
Vol 274 (1617) ◽  
pp. 1511-1516 ◽  
Author(s):  
Valerie B Morris

How the radial body plan of echinoderms is related to the bilateral body plan of their deuterostome relatives, the hemichordates and the chordates, has been a long-standing problem. Now, using direct development in a sea urchin, I show that the first radially arranged structures, the five primary podia, form from a dorsal and a ventral hydrocoele at the oral end of the archenteron. There is a bilateral plane of symmetry through the podia, the mouth, the archenteron and the blastopore. This adult bilateral plane is thus homologous with the bilateral plane of bilateral metazoans and a relationship between the radial and bilateral body plans is identified. I conclude that echinoderms retain and use the bilateral patterning genes of the common deuterostome ancestor. Homologies with the early echinoderms of the Cambrian era and between the dorsal hydrocoele, the chordate notochord and the proboscis coelom of hemichordates become evident.


1990 ◽  
Vol 110 (5) ◽  
pp. 1589-1598 ◽  
Author(s):  
J E Speksnijder ◽  
C Sardet ◽  
L F Jaffe

We have studied egg activation and ooplasmic segregation in the ascidian Phallusia mammillata using an imaging system that let us simultaneously monitor egg morphology and calcium-dependent aequorin luminescence. After insemination, a wave of highly elevated free calcium crosses the egg with a peak velocity of 8-9 microns/s. A similar wave is seen in egg fertilized in the absence of external calcium. Artificial activation via incubation with WGA also results in a calcium wave, albeit with different temporal and spatial characteristics than in sperm-activated eggs. In eggs in which movement of the sperm nucleus after entry is blocked with cytochalasin D, the sperm aster is formed at the site where the calcium wave had previously started. This indicates that the calcium wave starts where the sperm enters. In 70% of the eggs, the calcium wave starts in the animal hemisphere, which confirms previous observations that there is a preference for sperm to enter this part of the egg (Speksnijder, J. E., L. F. Jaffe, and C. Sardet. 1989. Dev. Biol. 133:180-184). About 30-40 s after the calcium wave starts, a slower (1.4 microns/s) wave of cortical contraction starts near the animal pole. It carries the subcortical cytoplasm to a contraction pole, which forms away from the side of sperm entry and up to 50 degrees away from the vegetal pole. We propose that the point of sperm entry may affect the direction of ooplasmic segregation by causing it to tilt away from the vegetal pole, presumably via some action of the calcium wave.


Sign in / Sign up

Export Citation Format

Share Document