The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann's organizer

Development ◽  
1997 ◽  
Vol 124 (23) ◽  
pp. 4905-4916 ◽  
Author(s):  
M.N. Laurent ◽  
I.L. Blitz ◽  
C. Hashimoto ◽  
U. Rothbacher ◽  
K.W. Cho

We describe the isolation of the Xenopus homeobox gene twin (Xtwn), which was identified in an expression cloning screen for molecules with dorsalizing activities. Injection of synthetic Xtwn mRNA restores a complete dorsal axis in embryos lacking dorsal structures and induces a complete secondary dorsal axis when ectopically expressed in normal embryos. The sequence homology, expression pattern and gain-of-function phenotype of Xtwn is most similar to the previously isolated Xenopus homeobox gene siamois (Xsia) suggesting that Xtwn and Xsia comprise a new subclass of homeobox genes important in dorsal axis specification. We find that Xtwn is able to activate the Spemann organizer-specific gene goosecoid (gsc) via direct binding to a region of the gsc promoter previously shown to mediate Wnt induction. Since Xtwn expression is strongly induced in ectodermal (animal cap) cells in response to overexpression of a dorsalizing Wnt molecule, we examined the possibility that Xtwn might be a direct target of a Wnt signal transduction cascade. First, we demonstrate that purified LEF1 protein can interact, in vitro, with consensus LEF1/TCF3-binding sites found within the Xtwn promoter. Second, these binding sites were shown to be required for Wnt-mediated induction of a Xtwn reporter gene containing these sites. As LEF1/TCF3 family transcription factors have previously been shown to directly mediate Wnt signaling, these results suggest that Xtwn induction by Wnt may be direct. Finally, in UV-hyperventralized embryos, expression of endogenous Xtwn is confined to the vegetal pole and a Xtwn reporter gene is hyperinduced vegetally in a LEF1/TCF3-binding-site-dependent manner. These results suggest that cortical rotation distributes Wnt-like dorsal determinants to the dorsal side of the embryo, including the dorsal marginal zone, and that these determinants may directly establish Spemann's organizer in this region.

1999 ◽  
Vol 146 (1) ◽  
pp. 233-242 ◽  
Author(s):  
Hua-Quan Miao ◽  
Shay Soker ◽  
Leonard Feiner ◽  
José Luis Alonso ◽  
Jonathan A. Raper ◽  
...  

Neuropilin-1 (NRP1) is a receptor for two unrelated ligands with disparate activities, vascular endothelial growth factor-165 (VEGF165), an angiogenesis factor, and semaphorin/collapsins, mediators of neuronal guidance. To determine whether semaphorin/collapsins could interact with NRP1 in nonneuronal cells, the effects of recombinant collapsin-1 on endothelial cells (EC) were examined. Collapsin-1 inhibited the motility of porcine aortic EC (PAEC) expressing NRP1 alone; coexpressing KDR and NRP1 (PAEC/KDR/NRP1), but not parental PAEC; or PAEC expressing KDR alone. The motility of PAEC expressing NRP1 was inhibited by 65–75% and this inhibition was abrogated by anti-NRP1 antibody. In contrast, VEGF165 stimulated the motility of PAEC/KDR/NRP1. When VEGF165 and collapsin-1 were added simultaneously to PAEC/KDR/NRP1, dorsal root ganglia (DRG), and COS-7/NRP1 cells, they competed with each other in EC motility, DRG collapse, and NRP1-binding assays, respectively, suggesting that the two ligands have overlapping NRP1 binding sites. Collapsin-1 rapidly disrupted the formation of lamellipodia and induced depolymerization of F-actin in an NRP1-dependent manner. In an in vitro angiogenesis assay, collapsin-1 inhibited the capillary sprouting of EC from rat aortic ring segments. These results suggest that collapsin-1 can inhibit EC motility as well as axon motility, that these inhibitory effects on motility are mediated by NRP1, and that VEGF165 and collapsin-1 compete for NRP1-binding sites.


Development ◽  
1993 ◽  
Vol 118 (2) ◽  
pp. 499-507 ◽  
Author(s):  
H. Steinbeisser ◽  
E.M. De Robertis ◽  
M. Ku ◽  
D.S. Kessler ◽  
D.A. Melton

In this study, we compare the effects of three mRNAs-goosecoid, activin and Xwnt-8- that are able to induce partial or complete secondary axes when injected into Xenopus embryos. Xwnt-8 injection produces complete secondary axes including head structures whereas activin and goosecoid injection produce partial secondary axes at high frequency that lack head structures anterior to the auditory vesicle and often lack notochord. Xwnt-8 can activate goosecoid only in the deep marginal zone, i.e., in the region in which this organizer-specific homeobox gene is normally expressed on the dorsal side. Activin B mRNA, however, can turn on goosecoid in all regions of the embryo. We also tested the capacity of these gene products to restore axis formation in embryos in which the cortical rotation was blocked by UV irradiation. Whereas Xwnt-8 gives complete rescue of anterior structures, both goosecoid and activin give partial rescue. Rescued axes including hindbrain structures up to level of the auditory vesicle can be obtained at high frequency even in the absence of notochord structures. The possible functions of Wnt-like and activin-like signals and of the goosecoid homeobox gene, and their order of action in the formation of Spemann's organizer are discussed.


1977 ◽  
Author(s):  
K. Subbarao ◽  
B. Rucinski ◽  
A. Summers ◽  
S. Niewiarowski

The interactions of dipyridamole with α1-acid glycoprotein of plasma and with human platelets are related to inhibition of adenosine uptake by platelets. One mole of dipyridamole binds to one mole of α1-acid glycoprotein with a dissociation constant (Kd) of 1.3 μM. It was found that platelets contain both high and low affinity binding sites for the drug. The binding of dipyridamole to the high affinity sites follows a Michaelis Menten binding pattern with a Kd of 0.04 μM. Approximately 2x104 dipyridamole molecules are bound at the high affinity sites of each platelet. The lower affinity sites bind the drug with a Kd of 4 μM. In the presence of α1acid glycoprotein the binding of dipyridamole to platelets is inhibited. Correspondingly, the dipyridamole inhibition of adenosine uptake by platelets is reduced 1000-fold by α1acid glycoprotein. Binding of dipyridamole to human platelets is essential for its inhibition of adenosine uptake by platelets. Dipyridamole reduced the [14C]-ATP to [14C]-ADP ratio in the platelets. Purified α1acid glycoprotein reversed these effects of dipyridamole on adenosine metabolism of platelets in a concentration dependent manner. A correlationwas observed between the level of circulating dipyridamole in plasma and the inhibition of [14C]-adenosine uptake by platelets of PRP samples of 12 human volunteers given different amounts of dipyridamole. The in vitro and ex vivo effects of dipyridamole on the [14C]-adenosine uptake by platelets were found to be identical. Our data suggest the presence of dipyridamole binding sites in platelets that regulate adenosine transport across the cell surface.


2010 ◽  
Vol 9 (4) ◽  
pp. 514-531 ◽  
Author(s):  
Barbara Heise ◽  
Julia van der Felden ◽  
Sandra Kern ◽  
Mario Malcher ◽  
Stefan Brückner ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, the TEA transcription factor Tec1 is known to regulate target genes together with a second transcription factor, Ste12. Tec1-Ste12 complexes can activate transcription through Tec1 binding sites (TCSs), which can be further combined with Ste12 binding sites (PREs) for cooperative DNA binding. However, previous studies have hinted that Tec1 might regulate transcription also without Ste12. Here, we show that in vivo, physiological amounts of Tec1 are sufficient to stimulate TCS-mediated gene expression and transcription of the FLO11 gene in the absence of Ste12. In vitro, Tec1 is able to bind TCS elements with high affinity and specificity without Ste12. Furthermore, Tec1 contains a C-terminal transcriptional activation domain that confers Ste12-independent activation of TCS-regulated gene expression. On a genome-wide scale, we identified 302 Tec1 target genes that constitute two distinct classes. A first class of 254 genes is regulated by Tec1 in a Ste12-dependent manner and is enriched for genes that are bound by Tec1 and Ste12 in vivo. In contrast, a second class of 48 genes can be regulated by Tec1 independently of Ste12 and is enriched for genes that are bound by the stress transcription factors Yap6, Nrg1, Cin5, Skn7, Hsf1, and Msn4. Finally, we find that combinatorial control by Tec1-Ste12 complexes stabilizes Tec1 against degradation. Our study suggests that Tec1 is able to regulate TCS-mediated gene expression by Ste12-dependent and Ste12-independent mechanisms that enable promoter-specific transcriptional control.


2013 ◽  
Vol 203 (1) ◽  
pp. 57-71 ◽  
Author(s):  
Nikhil Raghuram ◽  
Hilmar Strickfaden ◽  
Darin McDonald ◽  
Kylie Williams ◽  
He Fang ◽  
...  

Histone H1 plays a crucial role in stabilizing higher order chromatin structure. Transcriptional activation, DNA replication, and chromosome condensation all require changes in chromatin structure and are correlated with the phosphorylation of histone H1. In this study, we describe a novel interaction between Pin1, a phosphorylation-specific prolyl isomerase, and phosphorylated histone H1. A sub-stoichiometric amount of Pin1 stimulated the dephosphorylation of H1 in vitro and modulated the structure of the C-terminal domain of H1 in a phosphorylation-dependent manner. Depletion of Pin1 destabilized H1 binding to chromatin only when Pin1 binding sites on H1 were present. Pin1 recruitment and localized histone H1 phosphorylation were associated with transcriptional activation independent of RNA polymerase II. We thus identify a novel form of histone H1 regulation through phosphorylation-dependent proline isomerization, which has consequences on overall H1 phosphorylation levels and the stability of H1 binding to chromatin.


2009 ◽  
Vol 297 (4) ◽  
pp. E949-E955 ◽  
Author(s):  
Geneviève Escher ◽  
Isabelle Vögeli ◽  
Robert Escher ◽  
Robert C. Tuckey ◽  
Sandra Erickson ◽  
...  

In the kidney, progesterone is inactivated to 20α-dihydro-progesterone (20α-DH-progesterone) to protect the mineralocorticoid receptor from progesterone excess. In an attempt to clone the enzyme with 20α-hydroxysteroid activity using expression cloning in CHOP cells and a human kidney expression library, serendipitously cDNA encoding CYP27A1 was isolated. Overexpression of CYP27A1 in CHOP cells decreased progesterone conversion to 20α-DH-progesterone in a dose-dependent manner, an effect enhanced by cotransfection with adrenodoxin and adrenodoxin reductase. Incubation of CHOP cells with 27-hydroxycholesterol, a product of CYP27A1, increased the ratio of progesterone to 20α-DH-progesterone in a concentration-dependent manner, indicating that the effect of CYP27A1 overexpression was mediated by 27-hydroxycholesterol. To analyze whether these observations are relevant in vivo, progesterone and 20α-DH-progesterone were measured by gas chromatography-mass spectometry in 24-h urine of CYP27A1 gene knockout (ko) mice and their control wild-type and heterozygote littermates. In CYP27A1 ko mice, urinary progesterone concentrations were decreased, 20α-DH-progesterone increased, and the progesterone-to-20α-DH-progesterone ratio decreased threefold ( P < 0.001). Thus CYP27A1 modulates progesterone concentrations. The underlying mechanism is inhibition of 20α-hydroxysteroid dehydrogenase by 27-hydroxycholesterol.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255736
Author(s):  
Kedi Liu ◽  
Xingru Tao ◽  
Jing Su ◽  
Fei Li ◽  
Fei Mu ◽  
...  

Dalbergia Odorifera (DO) has been widely used for the treatment of cardiovascular and cerebrovascular diseasesinclinical. However, the effective substances and possible mechanisms of DO are still unclear. In this study, network pharmacology and molecular docking were used toelucidate the effective substances and active mechanisms of DO in treating ischemic stroke (IS). 544 DO-related targets from 29 bioactive components and 344 IS-related targets were collected, among them, 71 overlapping common targets were got. Enrichment analysis showed that 12 components were the possible bioactive components in DO, which regulating 9 important signaling pathways in 3 biological processes including ‘oxidative stress’ (KEGG:04151, KEGG:04068, KEGG:04915), ‘inflammatory response’(KEGG:04668, KEGG:04064) and ‘vascular endothelial function regulation’(KEGG:04066, KEGG:04370). Among these, 5 bioactive components with degree≥20 among the 12 potential bioactive components were selected to be docked with the top5 core targets using AutodockVina software. According to the results of molecular docking, the binding sites of core target protein AKT1 and MOL002974, MOL002975, and MOL002914 were 9, 8, and 6, respectively, and they contained 2, 1, and 0 threonine residues, respectively. And some binding sites were consistent, which may be the reason for the similarities and differences between the docking results of the 3 core bioactive components. The results of in vitro experiments showed that OGD/R could inhibit cell survival and AKT phosphorylation which were reversed by the 3 core bioactive components. Among them, MOL002974 (butein) had a slightly better effect. Therefore, the protective effect of MOL002974 (butein) against cerebral ischemia was further evaluated in a rat model of middle cerebral artery occlusion (MCAO) by detecting neurological score, cerebral infarction volume and lactate dehydrogenase (LDH) level. The results indicated that MOL002974 (butein) could significantly improve the neurological score of rats, decrease cerebral infarction volume, and inhibit the level of LDH in the cerebral tissue and serum in a dose-dependent manner. In conclusion, network pharmacology and molecular docking predicate the possible effective substances and mechanisms of DO in treating IS. And the results are verified by the in vitro and in vivo experiments. This research reveals the possible effective substances from DO and its active mechanisms for treating IS and provides a new direction for the secondary development of DO for treating IS.


2021 ◽  
Vol 17 (2) ◽  
pp. e1009291
Author(s):  
Yuli Talyansky ◽  
Travis B. Nielsen ◽  
Jun Yan ◽  
Ulrike Carlino-Macdonald ◽  
Gisela Di Venanzio ◽  
...  

Acinetobacter baumannii is a highly antibiotic-resistant bacterial pathogen for which novel therapeutic approaches are needed. Unfortunately, the drivers of virulence in A. baumannii remain uncertain. By comparing genomes among a panel of A. baumannii strains we identified a specific gene variation in the capsule locus that correlated with altered virulence. While less virulent strains possessed the intact gene gtr6, a hypervirulent clinical isolate contained a spontaneous transposon insertion in the same gene, resulting in the loss of a branchpoint in capsular carbohydrate structure. By constructing isogenic gtr6 mutants, we confirmed that gtr6-disrupted strains were protected from phagocytosis in vitro and displayed higher bacterial burden and lethality in vivo. Gtr6+ strains were phagocytized more readily and caused lower bacterial burden and no clinical illness in vivo. We found that the CR3 receptor mediated phagocytosis of gtr6+, but not gtr6-, strains in a complement-dependent manner. Furthermore, hypovirulent gtr6+ strains demonstrated increased virulence in vivo when CR3 function was abrogated. In summary, loss-of-function in a single capsule assembly gene dramatically altered virulence by inhibiting complement deposition and recognition by phagocytes across multiple A. baumannii strains. Thus, capsular structure can determine virulence among A. baumannii strains by altering bacterial interactions with host complement-mediated opsonophagocytosis.


Development ◽  
2001 ◽  
Vol 128 (11) ◽  
pp. 2163-2173 ◽  
Author(s):  
Ana Busturia ◽  
Alan Lloyd ◽  
Fernando Bejarano ◽  
Michael Zavortink ◽  
Hua Xin ◽  
...  

Silencing of homeotic gene expression requires the function of cis-regulatory elements known as Polycomb Response Elements (PREs). The MCP silencer element of the Drosophila homeotic gene Abdominal-B has been shown to behave as a PRE and to be required for silencing throughout development. Using deletion analysis and reporter gene assays, we defined a 138 bp sequence within the MCP silencer that is sufficient for silencing of a reporter gene in the imaginal discs. Within the MCP138 fragment, there are four binding sites for the Pleiohomeotic protein (PHO) and two binding sites for the GAGA factor (GAF), encoded by the Trithorax-like gene. PHO and the GAF proteins bind to these sites in vitro. Mutational analysis of PHO and GAF binding sequences indicate that these sites are necessary for silencing in vivo. Moreover, silencing by MCP138 depends on the function of the Trithorax-like gene, and on the function of the PcG genes, including pleiohomeotic. Deletion and mutational analyses show that, individually, either PHO or GAF binding sites retain only weak silencing activity. However, when both PHO and GAF binding sites are present, they achieve strong silencing. We present a model in which robust silencing is achieved by sequential and facilitated binding of PHO and GAF.


1993 ◽  
Vol 13 (1) ◽  
pp. 543-550
Author(s):  
E W Scott ◽  
H V Baker

In Saccharomyces cerevisiae, the TPI gene product, triosephosphate isomerase, makes up about 2% of the soluble cellular protein. Using in vitro and in vivo footprinting techniques, we have identified four binding sites for three factors in the 5' noncoding region of TPI: a REB1-binding site located at positions -401 to -392, two GCR1-binding sites located at positions -381 to -366 and -341 to -326, and a RAP1-binding site located at positions -358 to -346. We tested the effects of mutations at each of these binding sites on the expression of a TPI::lacZ gene fusion which carried 853 bp of the TPI 5' noncoding region integrated at the URA3 locus. The REB1-binding site is dispensable when material 5' to it is deleted; however, if the sequence 5' to the REB1-binding site is from the TPI locus, expression is reduced fivefold when the site is mutated. Because REB1 blocks nucleosome formation, the most likely function of its binding site in the TPI controlling region is to prevent the formation of nucleosomes over the TPI upstream activation sequence. Mutations in the RAP1-binding site resulted in a 10-fold reduction in expression of the reporter gene. Mutating either GCR1-binding site alone had a modest effect on expression of the fusion. However, mutating both GCR1-binding sites resulted in a 68-fold reduction in the level of expression of the reporter gene. A LexA-GCR1 fusion protein containing the DNA-binding domain of LexA fused to the amino terminus of GCR1 was able to activate expression of a lex operator::GAL1::lacZ reporter gene 116-fold over background levels. From this experiment, we conclude that GCR1 is able to activate gene expression in the absence of REB1 or RAP1 bound at adjacent binding sites. On the basis of these results, we suggest that GCR1 binding is required for activation of TPI and other GCR1-dependent genes and that the primary role of other factors which bind adjacent to GCR1-binding sites is to facilitate of modulate GCR1 binding in vivo.


Sign in / Sign up

Export Citation Format

Share Document