FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development

Development ◽  
1998 ◽  
Vol 125 (21) ◽  
pp. 4325-4333 ◽  
Author(s):  
M. Bei ◽  
R. Maas

During early tooth development, multiple signaling molecules are expressed in the dental lamina epithelium and induce the dental mesenchyme. One signal, BMP4, has been shown to induce morphologic changes in dental mesenchyme and mesenchymal gene expression via Msx1, but BMP4 cannot substitute for all the inductive functions of the dental epithelium. To investigate the role of FGFs during early tooth development, we examined the expression of epithelial and mesenchymal Fgfs in wild-type and Msx1 mutant tooth germs and tested the ability of FGFs to induce Fgf3 and Bmp4 expression in wild-type and Msx1 mutant dental mesenchymal explants. Fgf8 expression is preserved in Msx1 mutant epithelium while that of Fgf3 is not detected in Msx1 mutant dental mesenchyme. Moreover, dental epithelium as well as beads soaked in FGF1, FGF2 or FGF8 induce Fgf3 expression in dental mesenchyme in an Msx1-dependent manner. These results indicate that, like BMP4, FGF8 constitutes an epithelial inductive signal capable of inducing the expression of downstream signaling molecules in dental mesenchyme via Msx1. However, the BMP4 and FGF8 signaling pathways are distinct. BMP4 cannot induce Fgf3 nor can FGFs induce Bmp4 expression in dental mesenchyme, even though both signaling molecules can induce Msx1 and Msx1 is necessary for Fgf3 and Bmp4 expression in dental mesenchyme. In addition, we have investigated the effects of FGFs and BMP4 on the distal-less homeobox genes Dlx1 and Dlx2 and we have clarified the relationship between Msx and Dlx gene function in the developing tooth. Dlx1,Dlx2 double mutants exhibit a lamina stage arrest in maxillary molar tooth development (Thomas B. L., Tucker A. S., Qiu M., Ferguson C. A., Hardcastle Z., Rubenstein J. L. R. and Sharpe P. T. (1997) Development 124, 4811–4818). Although the maintenance of molar mesenchymal Dlx2 expression at the bud stage is Msx1-dependent, both the maintenance of Dlx1 expression and the initial activation of mesenchymal Dlx1 and Dlx2 expression during the lamina stage are not. Moreover, in contrast to the tooth bud stage arrest observed in Msx1 mutants, Msx1,Msx2 double mutants exhibit an earlier phenotype closely resembling the lamina stage arrest observed in Dlx1,Dlx2 double mutants. These results are consistent with functional redundancy between Msx1 and Msx2 in dental mesenchyme and support a model whereby Msx and Dlx genes function in parallel within the dental mesenchyme during tooth initiation. Indeed, as predicted by such a model, BMP4 and FGF8, epithelial signals that induce differential Msx1 and Msx2 expression in dental mesenchyme, also differentially induce Dlx1 and Dlx2 expression, and do so in an Msx1-independent manner. These results integrate Dlx1, Dlx2 and Fgf3 and Fgf8 into the odontogenic regulatory hierarchy along with Msx1, Msx2 and Bmp4, and provide a basis for interpreting tooth induction in terms of transcription factors which, individually, are necessary but not sufficient for the expression of downstream signals and therefore must act in specific combinations.

Development ◽  
2000 ◽  
Vol 127 (7) ◽  
pp. 1431-1443 ◽  
Author(s):  
Y. Zhang ◽  
Z. Zhang ◽  
X. Zhao ◽  
X. Yu ◽  
Y. Hu ◽  
...  

The murine tooth development is governed by sequential and reciprocal epithelial-mesenchymal interactions. Multiple signaling molecules are expressed in the developing tooth germ and interact each other to mediate the inductive tissue interactions. Among them are Sonic hedgehog (SHH), Bone Morphogenetic Protein-2 (BMP2) and Bone Morphogenetic Protein-4 (BMP4). We have investigated the interactions between these signaling molecules during early tooth development. We found that the expression of Shh and Bmp2 is downregulated at E12.5 and E13.5 in the dental epithelium of the Msx1 mutant tooth germ where Bmp4 expression is significantly reduced in the dental mesenchyme. Inhibition of BMP4 activity by noggin resulted in repression of Shh and Bmp2 in wild-type dental epithelium. When implanted into the dental mesenchyme of Msx1 mutants, beads soaked with BMP4 protein were able to restore the expression of both Shh and Bmp2 in the Msx1 mutant epithelium. These results demonstrated that mesenchymal BMP4 represents one component of the signal acting on the epithelium to maintain Shh and Bmp2 expression. In contrast, BMP4-soaked beads repressed Shh and Bmp2 expression in the wild-type dental epithelium. TUNEL assay indicated that this suppression of gene expression by exogenous BMP4 was not the result of an increase in programmed cell death in the tooth germ. Ectopic expression of human Bmp4 to the dental mesenchyme driven by the mouse Msx1 promoter restored Shh expression in the Msx1 mutant dental epithelium but repressed Shh in the wild-type tooth germ in vivo. We further demonstrated that this regulation of Shh expression by BMP4 is conserved in the mouse developing limb bud. In addition, Shh expression was unaffected in the developing limb buds of the transgenic mice in which a constitutively active Bmpr-IB is ectopically expressed in the forelimb posterior mesenchyme and throughout the hindlimb mesenchyme, suggesting that the repression of Shh expression by BMP4 may not be mediated by BMP receptor-IB. These results provide evidence for a new function of BMP4. BMP4 can act upstream to Shh by regulating Shh expression in mouse developing tooth germ and limb bud. Taken together, our data provide insight into a new regulatory mechanism for Shh expression, and suggest that this BMP4-mediated pathway in Shh regulation may have a general implication in vertebrate organogenesis.


2003 ◽  
Vol 71 (6) ◽  
pp. 3196-3205 ◽  
Author(s):  
Charles C. Kim ◽  
Denise Monack ◽  
Stanley Falkow

ABSTRACT Two acidified nitrite-inducible genes of Salmonella enterica serovar Typhimurium were identified with a green fluorescent protein-based promoter-trap screen. The nitrite-inducible promoters were located upstream of loci that we designated nipAB and nipC, which correspond to hcp-hcr (hybrid cluster protein) of Escherichia coli and norA of Alcaligenes eutrophus, respectively. Maximal induction of the promoters by nitrite was dependent on pH. The nipAB promoter was regulated by oxygen in an Fnr-dependent manner. The nipC promoter was also regulated by oxygen but in an Fnr-independent manner. The promoters were upregulated in activated RAW264.7 macrophage-like cells, which produce NO via the inducible nitric oxide synthase (iNOS), and the induction was inhibited by aminoguanidine, an inhibitor of iNOS. Although the nipAB and nipC mutants displayed no defects under a variety of in vitro conditions or in tissue culture infections, they exhibited lower oral 50% lethal doses (LD50s) than did the wild type in C57BL/6J mouse infections. The lower LD50s reflected an unexpected increased ability of small inoculating doses of the mutant bacteria to cause lethal infection 2 to 3 weeks after challenge, compared to a similar challenge dose of wild-type bacteria. We conclude that these genes are regulated by physiological nitrogen oxides and that the absence of these bacterial genes in some way diminishes the ability of mice to clear a low dose infection.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 964-964 ◽  
Author(s):  
Martin Janz ◽  
Thorsten Stühmer ◽  
Bernd Dörken ◽  
Ralf Bargou

Abstract Although the majority of patients with classical Hodgkin lymphoma (cHL) can be cured by conventional chemotherapy, a substantial proportion of patients will finally develop treatment-induced secondary malignancies. Therefore, non-genotoxic targeting of major cellular survival pathways could be an interesting novel treatment strategy for patients with cHL. In this study, we focused on the analysis of p53-dependent and p53-independent signaling pathways in Hodgkin/Reed-Sternberg (HRS) cells. To test whether p53 signaling is functional in cHL and whether activation of the p53 pathway is sufficient to kill HRS cells, we employed a recently developed small-molecule antagonist of MDM2, designated nutlin-3a, that disrupts the p53-MDM2 interaction. Nutlin-3a efficiently increased the level of p53 and induced expression of p53 downstream targets in Hodgkin cell lines with wild-type p53, whereas no effects were observed in Hodgkin cell lines that harbor p53 mutations. Activation of the p53 pathway led to strong induction of apoptosis in p53 wild-type Hodgkin cell lines. Knock-down of p53 by RNA interference protected cells from nutlin-induced apoptosis, demonstrating that nutlin-3a exerts its effects strictly through p53. In addition, MDM2 inhibition strongly sensitized HRS cells to cytotoxic drugs, such as doxorubicin, etoposide, or vincristine. In view of the fact that HRS cells are characterized by high constitutive NF-κB activity, we also analyzed the effects of a second non-genotoxic agent, geldanamycin, which is an inhibitor of the HSP90/NF-κB pathway. Titration experiments showed that the pro-apoptotic effects of geldanamycin correlate with the mutation status of IκB proteins, demonstrating strong induction of apoptosis in cell lines with wild-type IκB. Furthermore, Hodgkin cell lines that contain wild-type IκB but lack functional p53 (through mutation or siRNA knock-down) are resistant to nutlin treatment, but still respond to treatment with geldanamycin. This indicates that inhibitors of HSP90 induce apoptosis in HRS cells in a p53-independent manner. Therefore, combined targeting of p53-dependent and p53-independent pathways could be a promising approach to develop highly effective and less genotoxic treatment strategies for patients with cHL.


2020 ◽  
Author(s):  
Craig A. Eyster ◽  
Satoshi Matsuzaki ◽  
Jennifer R. Giorgione ◽  
Kenneth M. Humphries

AbstractThe cAMP-dependent protein kinase (PKA) signaling pathway is the primary means by which the heart regulates moment-to-moment changes in contractility and metabolism. We have previously found that PKA signaling is dysfunctional in the diabetic heart, yet the underlying mechanisms are not fully understood. The objective of this study was to determine if decreased insulin signaling contributes to a dysfunctional PKA response. To do so, we isolated adult cardiomyocytes (ACMs) from wild type and Akita type 1 diabetic mice. ACMs were cultured in the presence or absence of insulin and PKA signaling was visualized by immunofluorescence microscopy using an antibody that recognizes proteins specifically phosphorylated by PKA. We found significant decreases in proteins phosphorylated by PKA in wild type ACMs cultured in the absence of insulin. Akita ACMs also had decreased PKA signaling in the absence of insulin and this was not rescued by insulin. The decrease in PKA signaling was observed regardless of whether the kinase was stimulated with a beta-agonist, a cell-permeable cAMP analog, or with phosphodiesterase inhibitors. PKA content was unaffected, suggesting that the decrease in PKA signaling may be occurring by the loss of specific PKA substrates. Phospho-specific antibodies were therefore used to discern which potential substrates may be sensitive to the loss of insulin. Contractile proteins were phosphorylated similarly in wild type and Akita ACMs regardless of insulin. However, phosphorylation of the glycolytic regulator, PFK-2, was significantly decreased in an insulin-dependent manner in wild type ACMs and in an insulin-independent manner in Akita ACMs. These results demonstrate a defect in PKA activation in the diabetic heart, mediated in part by deficient insulin signaling, that results in an abnormal activation of a primary metabolic regulator.


2017 ◽  
Vol 97 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Y. Zhou ◽  
L. Zheng ◽  
F. Li ◽  
M. Wan ◽  
Y. Fan ◽  
...  

Lineage-committed differentiation is an essential biological program during odontogenesis, which is tightly regulated by lineage-specific genes. Some of these genes are modified by colocalization of H3K4me3 and H3K27me3 marks at promoter regions in progenitors. These modifications, named “bivalent domains,” maintain genes in a poised state and then resolve for later activation or repression during differentiation. Wnt5a has been reported to promote odontogenic differentiation in dental mesenchyme. However, relatively little is known about the epigenetic modulations on Wnt5a activation during tooth development. Here, we investigated the spatiotemporal patterns of H3K4me3 and H3K27me3 marks in developing mouse molars. Associated H3K4me3 methylases (mixed-lineage leukemia [MLL] complex) and H3K27me3 demethylases (JMJD3 and UTX) were dynamically expressed between early and late bell stage of human tooth germs and in cultured human dental papilla cells (hDPCs) during odontogenic induction. Poised WNT5A gene was marked by bivalent domains containing repressive marks (H3K27me3) and active marks (H3K4me3) on promoters. The bivalent domains tended to resolve during inducted differentiation, with removal of the H3K27me3 mark in a JMJD3-dependent manner. When JMJD3 was knocked down in cultured hDPCs, odontogenic differentiation was suppressed. The depletion of JMJD3 epigenetically repressed WNT5A activation by increased H3K27me3 marks. In addition, JMJD3 could physically interact with ASH2L, a component of the MLL complex, to form a coactivator complex, cooperatively modulating H3K4me3 marks on WNT5A promoters. Overall, our study reveals that transcription activities of WNT5A were epigenetically regulated by the negotiated balance between H3K27me3 and H3K4me3 marks and tightly mediated by JMJD3 and MLL coactivator complex, ultimately modulating odontogenic commitment during dental mesenchymal cell differentiation.


2010 ◽  
Vol 30 (10) ◽  
pp. 2485-2497 ◽  
Author(s):  
Hans-Martin Herz ◽  
Laurence D. Madden ◽  
Zhihong Chen ◽  
Clare Bolduc ◽  
Eugene Buff ◽  
...  

ABSTRACT Trimethylated lysine 27 of histone H3 (H3K27me3) is an epigenetic mark for gene silencing and can be demethylated by the JmjC domain of UTX. Excessive H3K27me3 levels can cause tumorigenesis, but little is known about the mechanisms leading to those cancers. Mutants of the Drosophila H3K27me3 demethylase dUTX display some characteristics of Trithorax group mutants and have increased H3K27me3 levels in vivo. Surprisingly, dUTX mutations also affect H3K4me1 levels in a JmjC-independent manner. We show that a disruption of the JmjC domain of dUTX results in a growth advantage for mutant cells over adjacent wild-type tissue due to increased proliferation. The growth advantage of dUTX mutant tissue is caused, at least in part, by increased Notch activity, demonstrating that dUTX is a Notch antagonist. Furthermore, the inactivation of Retinoblastoma (Rbf in Drosophila) contributes to the growth advantage of dUTX mutant tissue. The excessive activation of Notch in dUTX mutant cells leads to tumor-like growth in an Rbf-dependent manner. In summary, these data suggest that dUTX is a suppressor of Notch- and Rbf-dependent tumors in Drosophila melanogaster and may provide a model for UTX-dependent tumorigenesis in humans.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 193
Author(s):  
Chih-Hung Guo ◽  
Simon Hsia ◽  
Chieh-Han Chung ◽  
Yi-Chun Lin ◽  
Min-Yi Shih ◽  
...  

Fish oil (FO) and selenium (Se) possess antiangiogenic potential in malignant tumors. This study aimed to determine whether combination of FO and Se enhanced treatment efficacy of low-dose antiangiogenic agent Avastin (bevacizumab) in a dose-dependent manner and targeted multiple signaling pathways in triple-negative breast cancer (TNBC)-bearing mice. Randomized into five groups, mice received treatment with either physiological saline (control), Avastin alone, or Avastin in combination with low, medium, and high doses of FO/Se. The target signaling molecules for anticancer were determined either by measuring protein or mRNA expression. Avastin-treated mice receiving FO/Se showed lower tumor growth and metastasis than did mice treated with Avastin alone. Combination-treated mice exhibited lower expressions in multiple proangiogenic (growth) factors and their membrane receptors, and altered cytoplasmic signaling molecules (PI3K-PTEN-AKT-TSC-mTOR-p70S6K-4EBP1, Ras-Raf-MEK-ERK, c-Src-JAK2-STAT3-TMEPAI-Smad, LKB1-AMPK, and GSK3β/β-catenin). Dose-dependent inhibition of down-stream targets including epithelial-to-mesenchymal transition transcription factors, nuclear cyclin and cyclin-dependent kinases, cancer stem cell markers, heat shock protein (HSP-90), hypoxia-inducible factors (HIF-1α/-2α), matrix metalloprotease (MMP-9), and increased apoptosis were observed. These results suggest that combination treatment with FO and Se increases the therapeutic efficacy of Avastin against TNBC in a dose-dependent manner through multiple signaling pathways in membrane, cytoplasmic, and nucleic targets.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 41-64 ◽  
Author(s):  
Justin Courcelle ◽  
Arkady Khodursky ◽  
Brian Peter ◽  
Patrick O Brown ◽  
Philip C Hanawalt

Abstract The SOS response in UV-irradiated Escherichia coli includes the upregulation of several dozen genes that are negatively regulated by the LexA repressor. Using DNA microarrays containing amplified DNA fragments from 95.5% of all open reading frames identified on the E. coli chromosome, we have examined the changes in gene expression following UV exposure in both wild-type cells and lexA1 mutants, which are unable to induce genes under LexA control. We report here the time courses of expression of the genes surrounding the 26 documented lexA-regulated regions on the E. coli chromosome. We observed 17 additional sites that responded in a lexA-dependent manner and a large number of genes that were upregulated in a lexA-independent manner although upregulation in this manner was generally not more than twofold. In addition, several transcripts were either downregulated or degraded following UV irradiation. These newly identified UV-responsive genes are discussed with respect to their possible roles in cellular recovery following exposure to UV irradiation.


1995 ◽  
Vol 15 (8) ◽  
pp. 4125-4135 ◽  
Author(s):  
P Dent ◽  
D B Reardon ◽  
D K Morrison ◽  
T W Sturgill

The serine/threonine kinase Raf-1 functions downstream from Ras to activate mitogen-activated protein kinase kinase, but the mechanisms of Raf-1 activation are incompletely understood. To dissect these mechanisms, wild-type and mutant Raf-1 proteins were studied in an in vitro system with purified plasma membranes from v-Ras- and v-Src-transformed cells (transformed membranes). Wild-type (His)6- and FLAG-Raf-1 were activated in a Ras- and ATP-dependent manner by transformed membranes; however, Raf-1 proteins that are kinase defective (K375M), that lack an in vivo site(s) of regulatory tyrosine (YY340/341FF) or constitutive serine (S621A) phosphorylation, that do not bind Ras (R89L), or that lack an intact zinc finger (CC165/168SS) were not. Raf-1 proteins lacking putative regulatory sites for an unidentified kinase (S259A) or protein kinase C (S499A) were activated but with apparently reduced efficiency. The kinase(s) responsible for activation by Ras or Src may reside in the plasma membrane, since GTP loading of plasma membranes from quiescent NIH 3T3 cells (parental membranes) induced de novo capacity to activate Raf-1. Wild-type Raf-1, possessing only basal activity, was not activated by parental membranes in the absence of GTP loading. In contrast, Raf-1 Y340D, possessing significant activity, was, surprisingly, stimulated by parental membranes in a Ras-independent manner. The results suggest that activation of Raf-1 by phosphorylation may be permissive for further modulation by another membrane factor, such as a lipid. A factor(s) extracted with methanol-chloroform from transformed membranes or membranes from Sf9 cells coexpressing Ras and SrcY527F significantly enhanced the activity of Raf-1 Y340D or active Raf-1 but not that of inactive Raf-1. Our findings suggest a model for activation of Raf-1, wherein (i) Raf-1 associates with Ras-GTP, (ii) Raf-1 is activated by tyrosine and/or serine phosphorylation, and (iii) Raf-1 activity is further increased by a membrane cofactor.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3436-3436
Author(s):  
Pamela Correll ◽  
Qingping Liu Liu

Abstract We have shown previously that activation of the STK/RON receptor tyrosine kinase expressed on tissue resident macrophages, by it’s ligand macrophage stimulating protein (MSP), results in the inhibition of NFkB activation, inducible nitric oxide synthase (iNOS) expression and TNFa production, as well as the induction of arginase expression, suggesting a role for this receptor in the regulation of classical vs. alternative macrophage activation. Furthermore, mice with a targeted deletion in this receptor exhibit increased sensitivity to endotoxic shock and DTH responses. More recently, we have demonstrated that MSP stimulation of primary peritoneal macrophages inhibits the production of IL-12. In order to map the domains of STK responsible for the inhibition of classical macrophage activation by MSP, we generated mutant forms of the receptor and expressed wild-type and mutant receptors in primary bone marrow derived macrophages by retroviral transduction. Expression of wild-type STK in these primary cells resulted in the ligand-independent reduction in IL-12p40 production in response to LPS stimulation, which was further inhibited by MSP treatment. This is consistent with the lack of a requirement for MSP in regulating responses to endotoxin in vivo. Surprisingly, a kinase dead receptor, which fails to signal in 293T cells, was fully functional in this assay, suggesting that the kinase activity of the receptor is not required for the inhibition of IL-12p40 under these conditions. However, the docking site tyrosines in the c-terminal tail of the receptor are essential for the inhibition of IL-12p40 by STK, suggesting that STK may be phosphorylated by an another kinase in this system. STK/RON has been shown to associate both physically and functionally with a number of other cell-surface receptors including EpoR, IL-3R bc, EGFR, MET as well as a number of integrins and cadherins. We have shown previously that STK regulates the activity of the aMb2 integrin (CR3) in peritoneal macrophages in a PI3K, PKCz-dependent manner. Here we show that STK also physically associates with CR3, as well as CD14, in RAW264.7 cells in the absence of ligand. Both CR3 and CD14 are capable of directly binding to LPS. Thus, we speculate that STK may exist as part of a receptor complex in macrophages and that signalling through STK might be induced directly by LPS. This would provide a means by which STK could temper the response of tissue-resident macrophages to LPS thereby preventing damage to host tissues.


Sign in / Sign up

Export Citation Format

Share Document