Regulatory and functional interactions between the somatic sex regulatory gene transformer and the germline genes ovo and ovarian tumor

Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 861-871 ◽  
Author(s):  
S. Hinson ◽  
R.N. Nagoshi

In Drosophila, compatibility between the sexually differentiated state of the soma and the sex chromosome constitution of the germline is required for normal gametogenesis. In this study, we defined important aspects of the soma-germline interactions controlling early oogenesis. In particular, the sex-specific germline activity of the ovarian tumor promoter was found to be dependent upon somatic factors controlled by the somatic sex differentiation gene transformer. This regulation defines whether there is sufficient ovarian tumor expression in adult XX germ cells to support oogenesis. In addition, the ovarian tumor function required for female germline differentiation is dependent on the activity of another germline gene, ovo, whose regulation is transformer-independent. These and other data indicate that ovarian tumor plays a central role in coordinating regulatory inputs from the soma (as regulated by transformer) with those from the germline (involving ovo). We also demonstrate that transformer-dependent interactions influence whether XX germ cells require ovarian tumor or ovo functions to undergo early gametogenic differentiation. These results are incorporated into a model hypothesizing that the functions of ovarian tumor and ovo are dependent on an early sex determination decision in the XX germline that is at least partially controlled by somatic transformer activity.

Development ◽  
2000 ◽  
Vol 127 (4) ◽  
pp. 881-892 ◽  
Author(s):  
J. Andrews ◽  
D. Garcia-Estefania ◽  
I. Delon ◽  
J. Lu ◽  
M. Mevel-Ninio ◽  
...  

OVO controls germline and epidermis differentiation in flies and mice. In the Drosophila germline, alternative OVO-B and OVO-A isoforms have a common DNA-binding domain, but different N-termini. We show that these isoforms are transcription factors with opposite regulatory activities. Using yeast one-hybrid assays, we identified a strong activation domain within a common region and a counteracting repression domain within the OVO-A-specific region. In flies, OVO-B positively regulated the ovarian tumor promoter, while OVO-A was a negative regulator of the ovarian tumor and ovo promoters. OVO-B isoforms supplied ovo(+) function in the female germline and epidermis, while OVO-A isoforms had dominant-negative activity in both tissues. Moreover, elevated expression of OVO-A resulted in maternal-effect lethality while the absence of OVO-A resulted in maternal-effect sterility. Our data indicate that tight regulation of antagonistic OVO-B and OVO-A isoforms is critical for germline formation and differentiation.


2021 ◽  
Author(s):  
Pradeep Kumar Bhaskar ◽  
Sheryl Southard ◽  
Kelly Baxter ◽  
Mark Van Doren

SummaryThe establishment of sexual identity in germ cells is critical for the development of male and female germline stem cells (GSCs) and production of sperm vs. eggs. Thus, this process is essential for sexual reproduction and human fertility. Germ cells depend on signals from the somatic gonad to determine their sex, but in organisms such as flies, mice and humans, the sex chromosome genotype of the germ cells is also important for germline sexual development. How somatic signals and germ cell-intrinsic cues act together to regulate germline sex determination is a key question about which little is known. We have found that JAK/STAT signaling in the GSC niche promotes male identity in germ cells and GSCs, in part by activating expression of the epigenetic reader Phf7. We have also found that JAK/STAT signaling is blocked in XX (female) germ cells through the intrinsic action of the sex determination gene Sex lethal, which preserves female identity. Thus, an important function of germline sexual identity is to control how GSCs respond to signals in their niche environment.


Development ◽  
1999 ◽  
Vol 126 (9) ◽  
pp. 1917-1926 ◽  
Author(s):  
I. Sahut-Barnola ◽  
D. Pauli

The Drosophila gene stand still (stil) encodes a novel protein required for survival, sexual identity and differentiation of female germ cells. Using specific antibodies, we show that the Stil protein accumulates in the nucleus of all female germ cells throughout development, and is transiently expressed during early stages of male germline differentiation. Changes of Stil subnuclear localization during oogenesis suggest an association with chromatin. Several mutant alleles, which are point mutations in the Stil N-terminal domain, encode proteins that no longer co-localized with chromatin. We find that Stil binds to many sites on polytene chromosomes with strong preference for decondensed chromatin. This localization is very similar to that of RNA polymerase II. We show that Stil is required for high levels of transcription of the ovarian tumor gene in germ cells. Expression of ovarian tumor in somatic cells can be induced by ectopic expression of Stil. Finally, we find that transient ubiquitous somatic expression of Stil results in lethality of the fly at all stages of development.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009773
Author(s):  
Xueying Fan ◽  
Ioannis Moustakas ◽  
Vanessa Torrens-Juaneda ◽  
Qijing Lei ◽  
Geert Hamer ◽  
...  

During gametogenesis in mammals, meiosis ensures the production of haploid gametes. The timing and length of meiosis to produce female and male gametes differ considerably. In contrast to males, meiotic prophase I in females initiates during development. Hence, the knowledge regarding progression through meiotic prophase I is mainly focused on human male spermatogenesis and female oocyte maturation during adulthood. Therefore, it remains unclear how the different stages of meiotic prophase I between human oogenesis and spermatogenesis compare. Analysis of single-cell transcriptomics data from human fetal germ cells (FGC) allowed us to identify the molecular signatures of female meiotic prophase I stages leptotene, zygotene, pachytene and diplotene. We have compared those between male and female germ cells in similar stages of meiotic prophase I and revealed conserved and specific features between sexes. We identified not only key players involved in the process of meiosis, but also highlighted the molecular components that could be responsible for changes in cellular morphology that occur during this developmental period, when the female FGC acquire their typical (sex-specific) oocyte shape as well as sex-differences in the regulation of DNA methylation. Analysis of X-linked expression between sexes during meiotic prophase I suggested a transient X-linked enrichment during female pachytene, that contrasts with the meiotic sex chromosome inactivation in males. Our study of the events that take place during meiotic prophase I provide a better understanding not only of female meiosis during development, but also highlights biomarkers that can be used to study infertility and offers insights in germline sex dimorphism in humans.


Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 579-587 ◽  
Author(s):  
R.N. Nagoshi ◽  
J.S. Patton ◽  
E. Bae ◽  
P.K. Geyer

Gametogenesis in Drosophila requires sex-specific interactions between the soma and germline to control germ cell viability, proliferation, and differentiation. To determine what genetic components are involved in this interaction, we examined whether changes in the sexual identity of the soma affected the function of the ovarian tumor (otu) and ovo genes. These genes are required cell autonomously in the female germline for germ cell proliferation and differentiation. Mutations in otu and ovo cause a range of ovarian defects, including agametic ovaries and tumorous egg cysts, but do not affect spermatogenesis. We demonstrate that XY germ cells do not require otu when developing in testes, but become dependent on otu function for proliferation when placed in an ovary. This soma-induced requirement can be satisfied by the induced expression of the 98 × 10(3) M(r) OTU product, one of two isoforms produced by differential RNA splicing. These results indicate that the female somatic gonad can induce XY germ cells to become ‘female-like’ because they require an oogenesis-specific gene. In contrast, the requirement for ovo is dependent on a cell autonomous signal derived from the X:A ratio. We propose that differential regulation of the otu and ovo genes provides a mechanism for the female germline to incorporate both somatic and cell autonomous inputs required for oogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura Soler ◽  
Sabine Alves ◽  
Aurélien Brionne ◽  
Aurore Jacques ◽  
Vanessa Guérin ◽  
...  

AbstractIn poultry, in vitro propagated primordial germ cells (PGCs) represent an important tool for the cryopreservation of avian genetic resources. However, several studies have highlighted sexual differences exhibited by PGCs during in vitro propagation, which may compromise their reproductive capacities. To understand this phenomenon, we compared the proteome of pregonadal migratory male (ZZ) and female (ZW) chicken PGCs propagated in vitro by quantitative proteomic analysis using a GeLC-MS/MS strategy. Many proteins were found to be differentially abundant in chicken male and female PGCs indicating their early sexual identity. Many of the proteins more highly expressed in male PGCs were encoded by genes localised to the Z sex chromosome. This suggests that the known lack of dosage compensation of the transcription of Z-linked genes between sexes persists at the protein level in PGCs, and that this may be a key factor of their autonomous sex differentiation. We also found that globally, protein differences do not closely correlate with transcript differences indicating a selective translational mechanism in PGCs. Male and female PGC expressed protein sets were associated with differential biological processes and contained proteins known to be biologically relevant for male and female germ cell development, respectively. We also discovered that female PGCs have a higher capacity to uptake proteins from the cell culture medium than male PGCs. This study presents the first evidence of an early predetermined sex specific cell fate of chicken PGCs and their sexual molecular specificities which will enable the development of more precise sex-specific in vitro culture conditions for the preservation of avian genetic resources.


Genetics ◽  
1997 ◽  
Vol 147 (1) ◽  
pp. 231-242 ◽  
Author(s):  
Lucas Sánchez ◽  
Pedro Santamaria

Abstract This article reports the breaking of ethological barriers through the constitution of soma-germ line chimeras between species of the melanogaster subgroup of Drosophila, which are ethologically isolated. Female Drosophila yakuba and D. teissieri germ cells in a D. melanogaster ovary produced functional oocytes that, when fertilized by D. melanogaster sperm, gave rise to sterile yakuba-melanogaster andteissieri-melanogaster male and female hybrids. However, the erecta-melanogaster and orena-melanogaster hybrids were lethal, since female D. erecta and D. orena germ cells in a D. melanogaster ovary failed to form oocytes with the capacity to develop normally. This failure appears to be caused by an altered interaction between the melanogaster soma and the erecta and orena germ lines. Germ cells of D. teissieri and D. orena in a D. melanogaster testis produced motile sperm that was not stored in D. melanogaster females. This might be due to incompatibility between the teissieri and orena sperm and the melanogaster seminal fluid. A morphological analysis of the terminalia of yakuba-melanogaster and teissieri-melanogaster hybrids was performed. The effect on the terminalia of teissieri-melanogaster hybrids of a mutation in doublesex, a regulatory gene that controls the development of the terminalia, was also investigated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoma Ota ◽  
Makoto Hayashi ◽  
Shumpei Morita ◽  
Hiroki Miura ◽  
Satoru Kobayashi

AbstractDosage compensation is a mechanism that equalizes sex chromosome gene expression between the sexes. In Drosophila, individuals with two X chromosomes (XX) become female, whereas males have one X chromosome (XY). In males, dosage compensation of the X chromosome in the soma is achieved by five proteins and two non-coding RNAs, which assemble into the male-specific lethal (MSL) complex to upregulate X-linked genes twofold. By contrast, it remains unclear whether dosage compensation occurs in the germline. To address this issue, we performed transcriptome analysis of male and female primordial germ cells (PGCs). We found that the expression levels of X-linked genes were approximately twofold higher in female PGCs than in male PGCs. Acetylation of lysine residue 16 on histone H4 (H4K16ac), which is catalyzed by the MSL complex, was undetectable in these cells. In male PGCs, hyperactivation of X-linked genes and H4K16ac were induced by overexpression of the essential components of the MSL complex, which were expressed at very low levels in PGCs. Together, these findings indicate that failure of MSL complex formation results in the absence of X-chromosome dosage compensation in male PGCs.


Reproduction ◽  
2018 ◽  
Author(s):  
Susana B Rulli ◽  
María Julia Cambiasso ◽  
Laura D Ratner

In mammals, the reproductive function is controlled by the hypothalamic-pituitary-gonadal axis. During development, mechanisms mediated by gonadal steroids exert an imprinting at the hypothalamic-pituitary level, by establishing sexual differences in the circuits that control male and female reproduction. In rodents, the testicular production of androgens increases drastically during the fetal/neonatal stage. This process is essential for the masculinization of the reproductive tract, genitals and brain. The conversion of androgens to estrogens in the brain is crucial for the male sexual differentiation and behavior. Conversely, feminization of the brain occurs in the absence of high levels of gonadal steroids during the perinatal period in females. Potential genetic contribution to the differentiation of brain cells through direct effects of genes located on sex chromosomes is also relevant. In this review, we will focus on the phenotypic alterations that occur on the hypothalamic-pituitary-gonadal axis of transgenic mice with persistently elevated expression of the human chorionic gonadotropin hormone (hCG). Excess of endogenously synthesized gonadal steroids due to a constant hCG stimulation is able to disrupt the developmental programming of the hypothalamic-pituitary axis in both transgenic males and females. Locally produced estrogens by the hypothalamic aromatase might play a key role in the phenotype of these mice. The “four core genotypes” mouse model demonstrated a potential influence of sex chromosome genes in brain masculinization before critical periods of sex differentiation. Thus, hormonal and genetic factors interact to regulate the local production of the neurosteroids necessary for the programming of the male and female reproductive function.


Endocrinology ◽  
2007 ◽  
Vol 149 (4) ◽  
pp. 1813-1819 ◽  
Author(s):  
Eri Shiraishi ◽  
Norifumi Yoshinaga ◽  
Takeshi Miura ◽  
Hayato Yokoi ◽  
Yuko Wakamatsu ◽  
...  

Müllerian inhibiting substance (MIS) is a glycoprotein belonging to the TGF-β superfamily. In mammals, MIS is responsible for the regression of Müllerian ducts in the male fetus. However, the role of MIS in gonadal sex differentiation of teleost fish, which have no Müllerian ducts, has yet to be clarified. In the present study, we examined the expression pattern of mis and mis type 2 receptor (misr2) mRNAs and the function of MIS signaling in early gonadal differentiation in medaka (teleost, Oryzias latipes). In situ hybridization showed that both mis and misr2 mRNAs were expressed in the somatic cells surrounding the germ cells of both sexes during early sex differentiation. Loss-of-function of either MIS or MIS type II receptor (MISRII) in medaka resulted in suppression of germ cell proliferation during sex differentiation. These results were supported by cell proliferation assay using 5-bromo-2′-deoxyuridine labeling analysis. Treatment of tissue fragments containing germ cells with recombinant eel MIS significantly induced germ cell proliferation in both sexes compared with the untreated control. On the other hand, culture of tissue fragments from the MIS- or MISRII-defective embryos inhibited proliferation of germ cells in both sexes. Moreover, treatment with recombinant eel MIS in the MIS-defective embryos dose-dependently increased germ cell number in both sexes, whereas in the MISRII-defective embryos, it did not permit proliferation of germ cells. These results suggest that in medaka, MIS indirectly stimulates germ cell proliferation through MISRII, expressed in the somatic cells immediately after they reach the gonadal primordium.


Sign in / Sign up

Export Citation Format

Share Document