Expression pattern ofBrachyuryin the molluscPatella vulgatasuggests a conserved role in the establishment of the AP axis in Bilateria

Development ◽  
2002 ◽  
Vol 129 (6) ◽  
pp. 1411-1421 ◽  
Author(s):  
Nicolas Lartillot ◽  
Olivier Lespinet ◽  
Michel Vervoort ◽  
André Adoutte

We report the characterisation of a Brachyury ortholog (PvuBra) in the marine gastropod Patella vulgata. In this mollusc, the embryo displays an equal cleavage pattern until the 32-cell stage. There, an inductive event takes place that sets up the bilateral symmetry, by specifying one of the four initially equipotent vegetal macromeres as the posterior pole of all subsequent morphogenesis. This macromere, usually designated as 3D, will subsequently act as an organiser. We show that 3D expresses PvuBra as soon as its fate is determined. As reported for another mollusc (J. D. Lambert and L. M. Nagy (2001) Development128, 45-56), we found that 3D determination and activity also involve the activation of the MAP kinase ERK, and we further show that PvuBra expression in 3D requires ERK activity. PvuBra expression then rapidly spreads to neighbouring cells that cleave in a bilateral fashion and whose progeny will constitute the posterior edge of the blastopore during gastrulation, suggesting a role for PvuBra in regulating cell movements and cleavage morphology in Patella. Until the completion of gastrulation, PvuBra expression is maintained at the posterior pole, and along the developing anterior-posterior axis. Comparing this expression pattern with what is known in other Bilateria, we advocate that Brachyury might have a conserved role in the regulation of anterior-posterior patterning among Bilateria, through the maintenance of a posterior growth zone, suggesting that a teloblastic mode of axis formation might be ancestral to the Bilateria.

Reproduction ◽  
2001 ◽  
pp. 677-683 ◽  
Author(s):  
L Selwood

Developing patterns in early embryogenesis are analysed in conceptuses from several families, including Dasyuridae, Phalangeridae, Macropodidae and Didelphidae, in which cleavage has been examined in some detail. Features common to cleavage and blastocyst formation, and in some cases to hypoblast formation, are used to develop an outline of possible mechanisms leading to axis formation and lineage allocation. Relevant features that have been described only in some species are also included. It is suggested that certain features of marsupial cleavage establish patterns in the developing blastocyst epithelia, pluriblast, trophoblast and hypoblast that contribute to axis formation and lineage allocation. All marsupials examined had a polarized oocyte or conceptus, the polarity of which was related to the conceptus embryonic-abembryonic axis and, eventually, the conceptus dorsal-ventral axis and the formation of the pluriblast (future embryo) and trophoblast. The embryonic dorsal-ventral and anterior-posterior axes were established after the allocation of hypoblast and epiblast. Mechanisms that appear to result in patterning of the developing epithelia leading to axis formation and lineage allocation are discussed, and include sperm entry point, gravity, conceptus polarity, differentials in cell-zona, cell-cell and cell-type (boundary effects) contacts, cell division order during cleavage and signals external to the conceptus. A model of the patterning effects is included. The applicability of these mechanisms to other amniotes, including eutherian mammals, is also examined.


Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1559-1568 ◽  
Author(s):  
H. Hutter ◽  
R. Schnabel

In a C. elegans embryo the third cleavages of descendants of the anterior blastomere AB of the 2-cell stage create pairs of blastomeres that develop differently. By laser ablation experiments we show that the fates of all the posterior daughters of this division depend on an induction occurring three cleavages before these blastomeres are born. The time of induction precludes a direct effect on cell fate. Alternatively, we suggest that the induction creates a heritable cell polarity which is propagated through several divisions. We suggest a model to demonstrate how a signal could be propagated through several rounds of cell division. An important implication of our observations is that this early induction acts to specify blastomere identity, not tissue type. A detailed lineage analysis revealed that altering the inductive signal alters complex lineage patterns as a whole. The induction described here, together with two inductions described previously can be used to illustrate how the anterior portion of the C. elegans embryo can be successively subdivided into blastomeres with unique developmental potential.


Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 2987-2996 ◽  
Author(s):  
C. Wylie ◽  
M. Kofron ◽  
C. Payne ◽  
R. Anderson ◽  
M. Hosobuchi ◽  
...  

In previous work, we demonstrated that maternally encoded beta-catenin, the vertebrate homolog of armadillo, is required for formation of dorsal axial structures in early Xenopus embryos (Heasman, J., Crawford, A., Goldstone, K., Garner-Hamrick, P., Gumbiner, B., Kintner, C., Yoshida-Noro, C. and Wylie, C. (1994). Cell 79, 791–803). Here we investigated, firstly, the role(s) of beta-catenin in spatial terms, in different regions of the embryo, by injecting beta-catenin mRNA into individual blastomeres of beta-catenin-depleted embryos at the 32 cell stage. The results indicate that beta-catenin can rescue the dorsal axial structures in a non-cell-autonomous way and without changing the fates of the injected cells. This suggests that cells overexpressing beta-catenin send a ‘dorsal signal’ to other cells. This was confirmed by showing that beta-catenin overexpressing animal caps did not cause wild-type caps to form mesoderm, but did cause isolated beta-catenin-deficient marginal zones to form dorsal mesoderm. Furthermore beta-catenin-deficient vegetal masses treated with overexpressing caps regained their ability to act as Nieuwkoop Centers. Secondly, we studied the temporal activity of beta-catenin. We showed that zygotic transcription of beta-catenin starts after the midblastula transition (MBT), but does not rescue dorsal axial structures. We further demonstrated that the vegetal mass does not release a dorsal signal until after the onset of transcription, at the midblastula stage, suggesting that maternal beta-catenin protein is required at or before this time. Thirdly we investigated where, in relationship to other gene products known to be active in axis formation, beta-catenin is placed. We find that BVg1, bFGF, tBR (the truncated form of BMP2/4R), siamois and noggin activities are all downstream of beta-catenin, as shown by the fact that injection of their mRNAs rescues the effect of depleting maternally encoded beta-catenin. Interference with the action of glycogen synthase kinase (GSK), a vertebrate homolog of the Drosophila gene product, zeste white 3 kinase, does not rescue the effect, suggesting that it is upstream.


Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 191-203 ◽  
Author(s):  
B.I. Meyer ◽  
P. Gruss

We describe the expression pattern of the mouse Cdx-1 gene during early development, examined by both RNA and protein analyses. Cdx-1 expression began with the onset of the head process formation (day 7.5) in ectodermal and mesodermal cells of the primitive streak. Expression extended initially to the middle of the prospective hindbrain and subsequently regressed caudad to the spinal cord level by day 9.5. The mesoderm-specific expression was detected in the first somites and could be followed during their differentiation to the myotome of the dorsal somitic edge by day 12. The developing limb buds and the mesonephros exhibited expression up to day 12. No signal could be detected in notochordal cells and cells of the definitive endoderm. Thus, Cdx-1 is expressed during gastrulation when anterior-posterior positional values are established along the embryonic axes. Furthermore, the expression correlates with the formation of segmented tissue in the posterior hindbrain, the spinal cord and structures like the mesonephros.


Development ◽  
1998 ◽  
Vol 125 (15) ◽  
pp. 2837-2846 ◽  
Author(s):  
A. Gonzalez-Reyes ◽  
D. St Johnston

Gurken signals from the oocyte to the adjacent follicle cells twice during Drosophila oogenesis; first to induce posterior fate, thereby polarising the anterior-posterior axis of the future embryo and then to induce dorsal fate and polarise the dorsal-ventral axis. Here we show that Gurken induces two different follicle cell fates because the follicle cells at the termini of the egg chamber differ in their competence to respond to Gurken from the main-body follicle cells in between. By removing the putative Gurken receptor, Egfr, in clones of cells, we show that Gurken signals directly to induce posterior fate in about 200 cells, defining a terminal competence domain that extends 10–11 cell diameters from the pole. Furthermore, small clones of Egfr mutant cells at the posterior interpret their position with respect to the pole and differentiate as the appropriate anterior cell type. Thus, the two terminal follicle cell populations contain a symmetric prepattern that is independent of Gurken signalling. These results suggest a three-step model for the anterior-posterior patterning of the follicular epithelium that subdivides this axis into at least five distinct cell types. Finally, we show that Notch plays a role in both the specification and patterning of the terminal follicle cells, providing a possible explanation for the defect in anterior-posterior axis formation caused by Notch and Delta mutants.


2008 ◽  
Vol 35 (5) ◽  
pp. 394 ◽  
Author(s):  
Julie François ◽  
Magali Lallemand ◽  
Pierette Fleurat-Lessard ◽  
Laurent Laquitaine ◽  
Serge Delrot ◽  
...  

Grapevine (Vitis vinifera L.) embryos have an early developmental pattern which differs from the one observed in model angiosperms such as Arabidopsis, in that the plane of divisions show variations from one individual to another. Furthermore, the protoderm (the first tissue to differentiate) does not form in one step but rather, gradually with time during globule formation. In Arabidopsis, expression pattern of a particular lipid transfer protein (LTP) isoform, AtLTP1, appears to be related to protoderm establishment, and is considered as a molecular marker of its differentiation. To investigate whether a similar role for LTPs in the development of grapevine embryos, we investigated the expression pattern of VvLTP1, a Vitis homologue of AtLTP1, in somatic embryo development. Expression of the GUS reporter gene under the control of the VvLTP1 promoter demonstrated that this LTP isoform is a marker of protoderm formation, and confirmed that this tissue forms sequentially over time. Ectopic expression of VvLTP1 under the control of the 35S promoter led to grossly misshapen embryos, which failed to acquire bilateral symmetry and displayed an abnormal epidermal layer. These results indicate that a correct spatial or temporal expression, or both, of this gene is essential for grapevine embryo development.


Sign in / Sign up

Export Citation Format

Share Document