INO80 requires a polycomb subunit to regulate the establishment of poised chromatin in murine spermatocytes

Development ◽  
2022 ◽  
Vol 149 (1) ◽  
Author(s):  
Prabuddha Chakraborty ◽  
Terry Magnuson

ABSTRACT INO80 is the catalytic subunit of the INO80-chromatin remodeling complex that is involved in DNA replication, repair and transcription regulation. Ino80 deficiency in murine spermatocytes (Ino80cKO) results in pachytene arrest of spermatocytes due to incomplete synapsis and aberrant DNA double-strand break repair, which leads to apoptosis. RNA-seq on Ino80cKO spermatocytes revealed major changes in transcription, indicating that an aberrant transcription program arises upon INO80 depletion. In Ino80WT spermatocytes, genome-wide analysis showed that INO80-binding sites were mostly promoter proximal and necessary for the regulation of spermatogenic gene expression, primarily of premeiotic and meiotic genes. Furthermore, most of the genes poised for activity, as well as those genes that are active, shared INO80 binding. In Ino80cKO spermatocytes, most poised genes demonstrated de-repression due to reduced H3K27me3 enrichment and, in turn, showed increased expression levels. INO80 interacts with the core PRC2 complex member SUZ12 and promotes its recruitment. Furthermore, INO80 mediates H2A.Z incorporation at the poised promoters, which was reduced in Ino80cKO spermatocytes. Taken together, INO80 is emerging as a major regulator of the meiotic transcription program by mediating poised chromatin establishment through SUZ12 binding.

Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 364 ◽  
Author(s):  
Jakada ◽  
Aslam ◽  
Fakher ◽  
Greaves ◽  
Li ◽  
...  

Chromatin remodeling complex orchestrates numerous aspects of growth and development in eukaryotes. SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is a member of the SWI/SNF ATPase-containing chromatin remodeling complex responsible for the exchange of H2A for H2A.Z. In plants, SWR1-C plays a crucial role by transcriptionally regulating numerous biological and developmental processes. However, SWR1-C activity remains obscure in pineapple. Here, we aim to identify the SWR1-C subunits in pineapple. By genome-wide identification, we found a total of 11 SWR1-C subunits in the pineapple. The identified SWR1-C subunits were named and classified based on the sequence similarity and phylogenetic analysis. RNA-Seq analysis showed that pineapple SWR1-C subunits are expressed differentially in different organs and at different stages. Additionally, the qRT-PCR of pineapple SWR1-C subunits during abiotic stress exposure showed significant changes in their expression. We further investigated the functions of pineapple SWR1 COMPLEX 6 (AcSWC6) by ectopically expressing it in Arabidopsis. Interestingly, transgenic plants ectopically expressing AcSWC6 showed susceptibility to fungal infection and enhanced resistance to salt and osmotic stress, revealing its involvement in biotic and abiotic stress. Moreover, the complementation of mutant Arabidopsis swc6 by pineapple SWC6 suggested the conserved function of SWC6 in plants.


2007 ◽  
Vol 27 (16) ◽  
pp. 5639-5649 ◽  
Author(s):  
Eun Young Yu ◽  
Olga Steinberg-Neifach ◽  
Alain T. Dandjinou ◽  
Frances Kang ◽  
Ashby J. Morrison ◽  
...  

ABSTRACT ATP-dependent chromatin remodeling complexes have been implicated in the regulation of transcription, replication, and more recently DNA double-strand break repair. Here we report that the Ies3p subunit of the Saccharomyces cerevisiae INO80 chromatin remodeling complex interacts with a conserved tetratricopeptide repeat domain of the telomerase protein Est1p. Deletion of IES3 and some other subunits of the complex induced telomere elongation and altered telomere position effect. In telomerase-negative mutants, loss of Ies3p delayed the emergence of recombinational survivors and stimulated the formation of extrachromosomal telomeric circles in survivors. Deletion of IES3 also resulted in heightened levels of telomere-telomere fusions in telomerase-deficient strains. In addition, a delay in survivor formation was observed in an Arp8p-deficient mutant. Because Arp8p is required for the chromatin remodeling activity of the INO80 complex, the complex may promote recombinational telomere maintenance by altering chromatin structure. Consistent with this notion, we observed preferential localization of multiple subunits of the INO80 complex to telomeres. Our results reveal novel functions for a subunit of the telomerase complex and the INO80 chromatin remodeling complex.


2018 ◽  
Author(s):  
Kirill Jefimov ◽  
Nicolas Alcaraz ◽  
Susan L. Kloet ◽  
Signe Värv ◽  
Siri Aastedatter Sakya ◽  
...  

AbstractH3K27ac is associated with regulatory active enhancers, but its exact role in enhancer function remains elusive. Using mass spectrometry-based interaction proteomics, we identified the Super Elongation Complex (SEC) and GBAF, a non-canonical GLTSCR1L- and BRD9-containing SWI/SNF chromatin remodeling complex, to be major interactors of H3K27ac. We systematically characterized the composition of GBAF and the conserved GLTSCR1/1L ‘GiBAF’-domain, which we found to be responsible for GBAF complex formation and GLTSCR1L nuclear localization. Inhibition of the bromodomain of BRD9 revealed interaction between GLTSCR1L and H3K27ac to be BRD9-dependent and led to GLTSCR1L dislocation from its preferred binding sites at H3K27ac-associated enhancers. GLTSCR1L disassociation from chromatin resulted in genome-wide downregulation of enhancer transcription while leaving most mRNA expression levels unchanged, except for reduced mRNA levels from loci topologically linked to affected enhancers. Our results indicate that GBAF is an enhancer-associated chromatin remodeler important for transcriptional and regulatory activity of enhancers.Graphical abstract


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Christian Secchi ◽  
Paola Benaglio ◽  
Francesca Mulas ◽  
Martina Belli ◽  
Dwayne Stupack ◽  
...  

Abstract Background Adult granulosa cell tumor (aGCT) is a rare type of stromal cell malignant cancer of the ovary characterized by elevated estrogen levels. aGCTs ubiquitously harbor a somatic mutation in FOXL2 gene, Cys134Trp (c.402C < G); however, the general molecular effect of this mutation and its putative pathogenic role in aGCT tumorigenesis is not completely understood. We previously studied the role of FOXL2C134W, its partner SMAD3 and its antagonist FOXO1 in cellular models of aGCT. Methods In this work, seeking more comprehensive profiling of FOXL2C134W transcriptomic effects, we performed an RNA-seq analysis comparing the effect of FOXL2WT/SMAD3 and FOXL2C134W/SMAD3 overexpression in an established human GC line (HGrC1), which is not luteinized, and bears normal alleles of FOXL2. Results Our data shows that FOXL2C134W/SMAD3 overexpression alters the expression of 717 genes. These genes include known and novel FOXL2 targets (TGFB2, SMARCA4, HSPG2, MKI67, NFKBIA) and are enriched for neoplastic pathways (Proteoglycans in Cancer, Chromatin remodeling, Apoptosis, Tissue Morphogenesis, Tyrosine Kinase Receptors). We additionally expressed the FOXL2 antagonistic Forkhead protein, FOXO1. Surprisingly, overexpression of FOXO1 mitigated 40% of the altered genome-wide effects specifically related to FOXL2C134W, suggesting it can be a new target for aGCT treatment. Conclusions Our transcriptomic data provide novel insights into potential genes (FOXO1 regulated) that could be used as biomarkers of efficacy in aGCT patients.


2007 ◽  
Vol 306 (1) ◽  
pp. 354
Author(s):  
Brad Hoffman ◽  
Daniel Kok ◽  
Joy Witzsche ◽  
Martin Hirst ◽  
Gordon Robertson ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Anna Biernacka ◽  
Yingjie Zhu ◽  
Magdalena Skrzypczak ◽  
Romain Forey ◽  
Benjamin Pardo ◽  
...  

AbstractMaintenance of genome stability is a key issue for cell fate that could be compromised by chromosome deletions and translocations caused by DNA double-strand breaks (DSBs). Thus development of precise and sensitive tools for DSBs labeling is of great importance for understanding mechanisms of DSB formation, their sensing and repair. Until now there has been no high resolution and specific DSB detection technique that would be applicable to any cells regardless of their size. Here, we present i-BLESS, a universal method for direct genome-wide DNA double-strand break labeling in cells immobilized in agarose beads. i-BLESS has three key advantages: it is the only unbiased method applicable to yeast, achieves a sensitivity of one break at a given position in 100,000 cells, and eliminates background noise while still allowing for fixation of samples. The method allows detection of ultra-rare breaks such as those forming spontaneously at G-quadruplexes.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Maria A Sacta ◽  
Bowranigan Tharmalingam ◽  
Maddalena Coppo ◽  
David A Rollins ◽  
Dinesh K Deochand ◽  
...  

The glucocorticoid receptor (GR) potently represses macrophage-elicited inflammation, however, the underlying mechanisms remain obscure. Our genome-wide analysis in mouse macrophages reveals that pro-inflammatory paused genes, activated via global negative elongation factor (NELF) dissociation and RNA Polymerase (Pol)2 release from early elongation arrest, and non-paused genes, induced by de novo Pol2 recruitment, are equally susceptible to acute glucocorticoid repression. Moreover, in both cases the dominant mechanism involves rapid GR tethering to p65 at NF-kB-binding sites. Yet, specifically at paused genes, GR activation triggers widespread promoter accumulation of NELF, with myeloid cell-specific NELF deletion conferring glucocorticoid resistance. Conversely, at non-paused genes, GR attenuates the recruitment of p300 and histone acetylation, leading to a failure to assemble BRD4 and Mediator at promoters and enhancers, ultimately blocking Pol2 initiation. Thus, GR displays no preference for a specific pro-inflammatory gene class; however, it effects repression by targeting distinct temporal events and components of transcriptional machinery.


Sign in / Sign up

Export Citation Format

Share Document