scholarly journals Identification of SWI2/SNF2-Related 1 Chromatin Remodeling Complex (SWR1-C) Subunits in Pineapple and the Role of Pineapple SWR1 COMPLEX 6 (AcSWC6) in Biotic and Abiotic Stress Response

Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 364 ◽  
Author(s):  
Jakada ◽  
Aslam ◽  
Fakher ◽  
Greaves ◽  
Li ◽  
...  

Chromatin remodeling complex orchestrates numerous aspects of growth and development in eukaryotes. SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is a member of the SWI/SNF ATPase-containing chromatin remodeling complex responsible for the exchange of H2A for H2A.Z. In plants, SWR1-C plays a crucial role by transcriptionally regulating numerous biological and developmental processes. However, SWR1-C activity remains obscure in pineapple. Here, we aim to identify the SWR1-C subunits in pineapple. By genome-wide identification, we found a total of 11 SWR1-C subunits in the pineapple. The identified SWR1-C subunits were named and classified based on the sequence similarity and phylogenetic analysis. RNA-Seq analysis showed that pineapple SWR1-C subunits are expressed differentially in different organs and at different stages. Additionally, the qRT-PCR of pineapple SWR1-C subunits during abiotic stress exposure showed significant changes in their expression. We further investigated the functions of pineapple SWR1 COMPLEX 6 (AcSWC6) by ectopically expressing it in Arabidopsis. Interestingly, transgenic plants ectopically expressing AcSWC6 showed susceptibility to fungal infection and enhanced resistance to salt and osmotic stress, revealing its involvement in biotic and abiotic stress. Moreover, the complementation of mutant Arabidopsis swc6 by pineapple SWC6 suggested the conserved function of SWC6 in plants.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Christian Secchi ◽  
Paola Benaglio ◽  
Francesca Mulas ◽  
Martina Belli ◽  
Dwayne Stupack ◽  
...  

Abstract Background Adult granulosa cell tumor (aGCT) is a rare type of stromal cell malignant cancer of the ovary characterized by elevated estrogen levels. aGCTs ubiquitously harbor a somatic mutation in FOXL2 gene, Cys134Trp (c.402C < G); however, the general molecular effect of this mutation and its putative pathogenic role in aGCT tumorigenesis is not completely understood. We previously studied the role of FOXL2C134W, its partner SMAD3 and its antagonist FOXO1 in cellular models of aGCT. Methods In this work, seeking more comprehensive profiling of FOXL2C134W transcriptomic effects, we performed an RNA-seq analysis comparing the effect of FOXL2WT/SMAD3 and FOXL2C134W/SMAD3 overexpression in an established human GC line (HGrC1), which is not luteinized, and bears normal alleles of FOXL2. Results Our data shows that FOXL2C134W/SMAD3 overexpression alters the expression of 717 genes. These genes include known and novel FOXL2 targets (TGFB2, SMARCA4, HSPG2, MKI67, NFKBIA) and are enriched for neoplastic pathways (Proteoglycans in Cancer, Chromatin remodeling, Apoptosis, Tissue Morphogenesis, Tyrosine Kinase Receptors). We additionally expressed the FOXL2 antagonistic Forkhead protein, FOXO1. Surprisingly, overexpression of FOXO1 mitigated 40% of the altered genome-wide effects specifically related to FOXL2C134W, suggesting it can be a new target for aGCT treatment. Conclusions Our transcriptomic data provide novel insights into potential genes (FOXO1 regulated) that could be used as biomarkers of efficacy in aGCT patients.


Development ◽  
2022 ◽  
Vol 149 (1) ◽  
Author(s):  
Prabuddha Chakraborty ◽  
Terry Magnuson

ABSTRACT INO80 is the catalytic subunit of the INO80-chromatin remodeling complex that is involved in DNA replication, repair and transcription regulation. Ino80 deficiency in murine spermatocytes (Ino80cKO) results in pachytene arrest of spermatocytes due to incomplete synapsis and aberrant DNA double-strand break repair, which leads to apoptosis. RNA-seq on Ino80cKO spermatocytes revealed major changes in transcription, indicating that an aberrant transcription program arises upon INO80 depletion. In Ino80WT spermatocytes, genome-wide analysis showed that INO80-binding sites were mostly promoter proximal and necessary for the regulation of spermatogenic gene expression, primarily of premeiotic and meiotic genes. Furthermore, most of the genes poised for activity, as well as those genes that are active, shared INO80 binding. In Ino80cKO spermatocytes, most poised genes demonstrated de-repression due to reduced H3K27me3 enrichment and, in turn, showed increased expression levels. INO80 interacts with the core PRC2 complex member SUZ12 and promotes its recruitment. Furthermore, INO80 mediates H2A.Z incorporation at the poised promoters, which was reduced in Ino80cKO spermatocytes. Taken together, INO80 is emerging as a major regulator of the meiotic transcription program by mediating poised chromatin establishment through SUZ12 binding.


2019 ◽  
Author(s):  
Yuanda Lv ◽  
Fengqin Hu ◽  
Yongfeng Zhou ◽  
Feilong Wu ◽  
Ling Zhou ◽  
...  

AbstractSeveral studies have mined short-read RNA sequencing datasets to identify lncRNAs, and others have focused on the function of individual lncRNA in abiotic stress response. However, our understanding of the complement, function and origin of long-non-coding RNA (lncRNAs) response to abiotic stress, especially transposon derived lncRNA (TE-lncRNA), is still in its infancy. To discover and study lncRNAs in maize (Zea mays ssp. mays), we utilized a dataset of 127 RNA sequencing samples that included PacBio fl-cDNA and total RNA-Seq datasets. Overall, we identified 23,309 candidate lncRNAs, 60% of which were identified in polyadenylated (polyA+) samples. The majority (65%) of the 23,309 lncRNAs had sequence similarity to transposable elements (TEs). Most had similarity to long-terminal-repeat retrotransposons from the Copia and Gypsy superfamilies, representing the high proportion of these elements in the genome, but class II, DNA transposons were enriched for lncRNAs relative to their genomic representation by 2-fold. By assessing the fraction of lncRNAs that respond to abiotic stresses like heat, cold, salt and drought, we identified 1,077 differentially expressed lncRNA transcripts. Their expression was correlated (r2=0.48) with their nearest gene, suggesting that lncRNAs are subject to some of the cis regulatory features as neighboring genes. By inferring co-expression networks across our large dataset, we found that 39 lncRNAs act as major hubs in co-expression networks, of which 18 appeared to be derived from TEs. These results suggest that lncRNAs, especially TE-lncRNAs, may play key regulatory roles in moderating abiotic responses.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11403
Author(s):  
Kai Wang ◽  
Yating Cheng ◽  
Li Yi ◽  
Hailang He ◽  
Shaofeng Zhan ◽  
...  

Tubby-Like Proteins (TLPs) are important transcription factors with many functions and are found in both animals and plants. In plants, TLPs are thought to be involved in the abiotic stress response. To reveal the potential function of TLPs in the medicinal model plant Salvia miltiorrhiza, we identified 12 S. miltiorrhiza TLPs (SmTLPs) and conducted a comprehensive analysis. We examined SmTLP gene structure, protein structure, phylogenetics, and expression analysis. Our results show that all SmTLPs, except SmTLP11, have a complete typical Tub domain. Promoter analysis revealed that most SmTLPs are involved in hormone and abiotic stress responses. Expression analysis revealed that the 12 SmTLPs could be divided into three categories: those specifically expressed in roots, those specifically expressed in stems, and those specifically expressed in leaves. Additional studies have shown that SmTLP10 may play an important role in the plant cold resistance, while SmTLP12 may be involved in the S. miltiorrhiza ABA metabolic pathway. Our study represents the first comprehensive investigation of TLPs in S. miltiorrhiza. These data may provide useful clues for future studies and may support the hypotheses regarding the role of TLPs in plant abiotic stress process. All in all, we may provide a reference for improving S. miltiorrhiza quality using genetic engineering technology.


2020 ◽  
Author(s):  
Christian Secchi ◽  
Paola Benaglio ◽  
Francesca Mulas ◽  
Martina Belli ◽  
Dwayne Stupack ◽  
...  

Background: Adult granulosa cell tumor (aGCT) is a rare type of stromal cell malignant cancer of the ovary characterized by elevated estrogen levels. aGCTs ubiquitously harbor a somatic mutation in FOXL2 gene, Cys134Trp (c.402C<G); however, the general molecular effect of this mutation and its putative pathogenic role in aGCT tumorigenesis is not completely understood. We previously studied the role of FOXL2C134W, its partner SMAD3 and its antagonist FOXO1 in cellular models of aGCT. Methods: In this work, seeking more comprehensive profiling of FOXL2C134W transcriptomic effects, we performed an RNA-seq analysis comparing the effect of FOXL2WT/SMAD3 and FOXL2C143W/SMAD3 overexpression in an established human GC line (HGrC1), which is not luteinized, and bears normal alleles of FOXL2. Results: Our data shows that FOXL2C143W/SMAD3 overexpression alters the expression of 717 genes. These genes include known and novel FOXL2 targets (TGFB2, SMARCA4, HSPG2, MKI67, NFKBIA) and are enriched for neoplastic pathways (Proteoglycans in Cancer, Chromatin remodeling, Apoptosis, Tissue Morphogenesis, Tyrosine Kinase Receptors). We additionally expressed the FOXL2 antagonistic Forkhead protein, FOXO1. Surprisingly, overexpression of FOXO1 mitigated 40% of the altered genome-wide effects specifically related to FOXL2C134W, suggesting it can be a new target for aGCT treatment. Conclusions: our transcriptomic data provide novel insights into potential genes (FOXO1 regulated) that could be used as biomarkers of efficacy in aGCT patients.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 776
Author(s):  
Shipra Kumari ◽  
Bashistha Kumar Kanth ◽  
Ju young Ahn ◽  
Jong Hwa Kim ◽  
Geung-Joo Lee

Genome-wide transcriptome analysis using RNA-Seq of Lilium longiflorum revealed valuable genes responding to biotic stresses. WRKY transcription factors are regulatory proteins playing essential roles in defense processes under environmental stresses, causing considerable losses in flower quality and production. Thirty-eight WRKY genes were identified from the transcriptomic profile from lily genotypes, exhibiting leaf blight caused by Botrytis elliptica. Lily WRKYs have a highly conserved motif, WRKYGQK, with a common variant, WRKYGKK. Phylogeny of LlWRKYs with homologous genes from other representative plant species classified them into three groups- I, II, and III consisting of seven, 22, and nine genes, respectively. Base on functional annotation, 22 LlWRKY genes were associated with biotic stress, nine with abiotic stress, and seven with others. Sixteen unique LlWRKY were studied to investigate responses to stress conditions using gene expression under biotic and abiotic stress treatments. Five genes—LlWRKY3, LlWRKY4, LlWRKY5, LlWRKY10, and LlWRKY12—were substantially upregulated, proving to be biotic stress-responsive genes in vivo and in vitro conditions. Moreover, the expression patterns of LlWRKY genes varied in response to drought, heat, cold, and different developmental stages or tissues. Overall, our study provides structural and molecular insights into LlWRKY genes for use in the genetic engineering in Lilium against Botrytis disease.


2021 ◽  
Vol 22 (6) ◽  
pp. 2906
Author(s):  
Urszula Talar ◽  
Agnieszka Kiełbowicz-Matuk

B-box proteins represent diverse zinc finger transcription factors and regulators forming large families in various plants. A unique domain structure defines them—besides the highly conserved B-box domains, some B-box (BBX) proteins also possess CCT domain and VP motif. Based on the presence of these specific domains, they are mostly classified into five structural groups. The particular members widely differ in structure and fulfill distinct functions in regulating plant growth and development, including seedling photomorphogenesis, the anthocyanins biosynthesis, photoperiodic regulation of flowering, and hormonal pathways. Several BBX proteins are additionally involved in biotic and abiotic stress response. Overexpression of some BBX genes stimulates various stress-related genes and enhanced tolerance to different stresses. Moreover, there is evidence of interplay between B-box and the circadian clock mechanism. This review highlights the role of BBX proteins as a part of a broad regulatory network in crop plants, considering their participation in development, physiology, defense, and environmental constraints. A description is also provided of how various BBX regulators involved in stress tolerance were applied in genetic engineering to obtain stress tolerance in transgenic crops.


2006 ◽  
Vol 235 (10) ◽  
pp. 2722-2735 ◽  
Author(s):  
Binnur Eroglu ◽  
Guanghu Wang ◽  
Naxin Tu ◽  
Xutong Sun ◽  
Nahid F. Mivechi

Author(s):  
Mohadeseh Hassanisaadi ◽  
Mahmood Barani ◽  
Abbas Rahdar ◽  
Moslem Heidary ◽  
Anna Thysiadou ◽  
...  

2020 ◽  
Author(s):  
Mingkang Yang ◽  
Liping Wang ◽  
Xu Guo ◽  
Chuanglie Lin ◽  
Wei Huang ◽  
...  

Abstract Background: Autophagy is a highly conserved degradation process of cytoplasmic constituents in eukaryotes. Autophagy is known to be involved in the regulation of plant growth and development, as well as biotic and abiotic stress response. Although autophagy-related genes (ATGs) have been identified and characterized in many plant species, little is known about the autophagy process in Medicago truncatula. Results: In this study, 39 ATGs were identified in M. truncatula (MtATGs), and the gene structures and conserved domains of MtATGs were systematically characterized. In addition, many cis-elements which are related to hormone and stress responsiveness were identified in the promoters of MtATGs. Furthermore, phylogenetic analysis and interaction network analysis suggested that the function of MtATGs is evolutionarily conserved in Arabidopsis and M. truncatula. Gene expression analysis showed that most MtATGs were largely induced during seed development, but repressed by nodulation. Moreover, MtATGs were up-regulated in response to salt and drought stresses.Conclusion: These results provide a comprehensive overview of the MtATGs, which provided important clues for further functional analysis of autophagy in M. truncatula.


Sign in / Sign up

Export Citation Format

Share Document