Neurotrophic and X-ray blocks in the blastemal cell cycle

Development ◽  
1979 ◽  
Vol 50 (1) ◽  
pp. 169-173
Author(s):  
M. Maden

Using microdensitometry techniques the points in the cycle where blastemal cells become blocked after X-irradiation or denervation of the regenerating amphibian limb have been identified. X-irradiation blocks the cells in both G1 and G2 and those cells that were in S at the time of irradiation presumably proceed to G1. After denervation, however, cells accumulate only in G1 and those that were in S or G1 continue through the cycle to the next G1. The latter results are clearly contradictory to a recent theory proposing a G1 neurotrophic control of blastemal cells and a solution to the contradiction is presented in the light of recent results.

Author(s):  
Gregory L. Finch ◽  
Richard G. Cuddihy

The elemental composition of individual particles is commonly measured by using energydispersive spectroscopic microanalysis (EDS) of samples excited with electron beam irradiation. Similarly, several investigators have characterized particles by using external monochromatic X-irradiation rather than electrons. However, there is little available information describing measurements of particulate characteristic X rays produced not from external sources of radiation, but rather from internal radiation contained within the particle itself. Here, we describe the low-energy (< 20 KeV) characteristic X-ray spectra produced by internal radiation self-excitation of two general types of particulate samples; individual radioactive particles produced during the Chernobyl nuclear reactor accident and radioactive fused aluminosilicate particles (FAP). In addition, we compare these spectra with those generated by conventional EDS.Approximately thirty radioactive particle samples from the Chernobyl accident were on a sample of wood that was near the reactor when the accident occurred. Individual particles still on the wood were microdissected from the bulk matrix after bulk autoradiography.


1985 ◽  
Vol 40 (5-6) ◽  
pp. 364-372 ◽  
Author(s):  
P. Zipper ◽  
R. Wilfing ◽  
M. Kriechbaum ◽  
H. Durchschlag

Abstract The sulfhydryl enzyme malate synthase from baker’s yeast was X-irradiated with 6 kGy in air-saturated aqueous solution (enzyme concentration: ≃ 10 mg/ml; volume: 120 μl), in the absence or presence of the specific scavengers formate, superoxide dismutase, and catalase. After X-irradiation, a small aliquot of the irradiated solutions was tested for enzymic activity while the main portion was investigated by means of small-angle X-ray scattering. Additionally, an unir­radiated sample without additives was investigated as a reference. Experiments yielded the fol­lowing results: 1. X-irradiation in the absence of the mentioned scavengers caused considerable aggregation, fragmentation, and inactivation of the enzyme. The dose Dt37 for total (= repairable + non­-repayable) inactivation resulted as 4.4 kGy. The mean radius of gyration was found to be about 13 nm. The mean degree of aggregation was obtained as 5.7, without correction for fragmenta­tion. An estimation based on the thickness factor revealed that about 19% of material might be strongly fragmented. When this amount of fragments was accordingly taken into account, a value of 7.1 was obtained as an upper limit for the mean degree of aggregation. The observed retention of the thickness factor and the finding of two different cross-section factors are in full accord with the two-dimensional aggregation model established previously (Zipper and Durchschlag, Radiat. Environ. Biophys. 18, 99 - 121 (1980)). 2. The presence of catalytic amounts of superoxide dismutase and/or catalase, in the absence of formate, during X-irradiation reduced both aggregation and inactivation significantly. 3. The presence of formate (10 or 100 mᴍ) during X-irradiation led to a strong decrease of aggregation and inactivation. This effect was more pronounced with the higher formate concen­tration or when superoxide dismutase and/or catalase were simultaneously present during X-irradiation. The presence of formate also reduced the amount of fragments significantly. 4. The results clearly show that the aggregation and inactivation of malate synthase upon X-irradiation in aqueous solution are mainly caused by OH·; to a minor extent O·̄2 and H2O2 are additionally involved in the damaging processes.


2000 ◽  
Vol 20 (4) ◽  
pp. 1291-1298 ◽  
Author(s):  
Lindsey A. Allan ◽  
Trevor Duhig ◽  
Moira Read ◽  
Mike Fried

ABSTRACT Rat-1 cells are used in many studies on transformation, cell cycle, and apoptosis. Whereas UV treatment of Rat-1 cells results in apoptosis, X-ray treatment does not induce either apoptosis or a cell cycle block. X-ray treatment of Rat-1 cells results in both an increase of p53 protein and expression of the p53-inducible geneMDM2 but not the protein or mRNA of the p53-inducible p21WAF1/CIP1 gene, which in other cells plays an important role in p53-mediated cell cycle block. The lack of p21WAF1/CIP1 expression appears to be the result of hypermethylation of the p21WAF1/CIP1 promoter region, as p21WAF1/CIP1 protein expression could be induced by growth of Rat-1 cells in the presence of 5-aza-2-deoxycytidine. Furthermore, sequence analysis of bisulfite-treated DNA demonstrated extensive methylation of cytosine residues in CpG dinucleotides in a CpG-rich island in the promoter region of the p21WAF1/CIP1 gene. Stable X-ray-induced p53-dependent p21WAF1/CIP1 expression and cell cycle block were restored to a Rat-1 clone after transfection with a P1 artificial chromosome (PAC) DNA clone containing a rat genomic copy of the p21WAF1/CIP1 gene. The absence of expression of the p21WAF1/CIP1 gene may contribute to the suitability of Rat-1 cells for transformation, cell cycle, and apoptosis studies.


2022 ◽  
Author(s):  
Selvaraj Shyamsivappan ◽  
Raju Vivek ◽  
Thangaraj Suresh ◽  
Palanivel Naveen ◽  
Kaviyarasu Adhigaman ◽  
...  

A progression of new N-(3'-acetyl-8-nitro-2,3-dihydro-1H,3'H-spiro[quinoline-4,2'-[1,3,4]thiadiazol]-5'-yl) acetamide derivatives were synthesized from potent 8-nitro quinoline-thiosemicarbazones. The synthesized compounds were characterized by different spectroscopic studies and single X-ray crystallographic studies. The compounds were...


1960 ◽  
Vol 199 (6) ◽  
pp. 1101-1104 ◽  
Author(s):  
W. S. Moos ◽  
H. C. Mason ◽  
M. Counelis

The physiological effects of high-intensity x-irradiation (2 x 105 r/min.) and dosages of 1 x 106 r on mice (head and abdomen) were investigated. An increase in pulmonary and heart rates were observed. Electrocardiographic recordings after irradiation demonstrated reversal of wave components and increase of amplitudes. Blood counts present no changes except for a drop in leukocyte counts. Hemoglobin remained unchanged. A considerable increase in serum potassium was noted and some indications of methemoglobin production. Head-irradiated animals yielded a higher incidence of auricular congestion and brain hemorrhage in contrast to animals receiving abdominal irradiation.


2016 ◽  
Vol 23 (6) ◽  
pp. 1490-1497 ◽  
Author(s):  
Ian Robinson ◽  
Yang Yang ◽  
Fucai Zhang ◽  
Christophe Lynch ◽  
Mohammed Yusuf ◽  
...  

Scanning X-ray fluorescence microscopy has been used to probe the distribution of S, P and Fe within cell nuclei. Nuclei, which may have originated at different phases of the cell cycle, are found to show very different levels of Fe present with a strongly inhomogeneous distribution. P and S signals, presumably from DNA and associated nucleosomes, are high and relatively uniform across all the nuclei; these agree with X-ray phase contrast projection microscopy images of the same samples. Possible reasons for the Fe incorporation are discussed.


Sign in / Sign up

Export Citation Format

Share Document