Apolipoprotein expression by murine visceral yolk sac endoderm

Development ◽  
1984 ◽  
Vol 81 (1) ◽  
pp. 143-152
Author(s):  
Wei-Kang Shi ◽  
John K. Heath

Apolipoprotein expression was examined in the postimplantation mouse embryo. Antibodies directed against murine Apolipoprotein AI and human low-density lipoprotein (LDL) particles specifically immunoprecipitated metabolically labelled radioactive apolipoproteins from the culture supernatant of 10·5 days post coitum (days p.c.) yolk sac visceral endoderm cultured in vitro. No evidence for apolipoprotein expression by other embryonic or extraembryonic tissues at this stage was obtained. Immunohistochemical staining at sectioned 10·5 days p.c. embryos with anti-Apolipoprotein AI antibodies revealed specific localization of immunoreactive material in the yolk sac visceral endoderm. We conclude that the yolk sac visceral endoderm is a source of lipoproteins during postimplantation embryonic development.

2011 ◽  
Vol 392 (10) ◽  
pp. 859-867 ◽  
Author(s):  
Hsin-Hung Chen ◽  
Ching-Yi Chen ◽  
Lu-Ping Chow ◽  
Chu-Huang Chen ◽  
Yuan-Teh Lee ◽  
...  

Abstract The mechanisms of oxidation of low-density lipoproteins (LDLs) are not well defined, but epidemiological and experimental studies suggest that iron-catalyzed processes may contribute to atherogenesis. The aim of this study was to test the hypothesis that iron-catalyzed oxidations of LDLs in vitro produce diagnostic biomarkers of oxidation of the apolipoprotein that could be applied to studies in vivo. LDLs were oxidized in the presence of Fe2+, EDTA, and ascorbic acid for up to 40 h. Following delipidation and trypsin digestion, the peptides were separated by HPLC, with four peaks detected at 365 nm, whereas none were observed in peptides from unoxidized LDLs. The peptides were identified by MALDI-QTOF mass spectrometry as IVQILP(W+4) EQNEQVK, IYSL(W+4)EHSTK, FEGLQE(W+4)EGK, and YH(W+4)EHTGLTLR, with (W+4) rather than the W residues of the unoxidized protein. The mass gains (+4 increase in m/z in tryptophan, W) and absorbance at 365 nm indicate kynurenines, which were trypsin-releasable peptides that are on the surface of LDL particles. All four peptides thus characterized share the sequence of WE. The preferential oxidation of W residues in WE sequences suggest contributions from the C-proximate glutamate residues in chelation of the iron species, thereby influencing site selectivities of oxidation. These kynurenine-containing peptides might serve as biomarkers of iron-mediated oxidations in vivo.


2020 ◽  
Vol 295 (8) ◽  
pp. 2285-2298
Author(s):  
Samantha K. Sarkar ◽  
Alexander C. Y. Foo ◽  
Angela Matyas ◽  
Ikhuosho Asikhia ◽  
Tanja Kosenko ◽  
...  

Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a ligand of low-density lipoprotein (LDL) receptor (LDLR) that promotes LDLR degradation in late endosomes/lysosomes. In human plasma, 30–40% of PCSK9 is bound to LDL particles; however, the physiological significance of this interaction remains unknown. LDL binding in vitro requires a disordered N-terminal region in PCSK9's prodomain. Here, we report that peptides corresponding to a predicted amphipathic α-helix in the prodomain N terminus adopt helical structure in a membrane-mimetic environment. This effect was greatly enhanced by an R46L substitution representing an atheroprotective PCSK9 loss-of-function mutation. A helix-disrupting proline substitution within the putative α-helical motif in full-length PCSK9 lowered LDL binding affinity >5-fold. Modeling studies suggested that the transient α-helix aligns multiple polar residues to interact with positively charged residues in the C-terminal domain. Gain-of-function PCSK9 mutations associated with familial hypercholesterolemia (FH) and clustered at the predicted interdomain interface (R469W, R496W, and F515L) inhibited LDL binding, which was completely abolished in the case of the R496W variant. These findings shed light on allosteric conformational changes in PCSK9 required for high-affinity binding to LDL particles. Moreover, the initial identification of FH-associated mutations that diminish PCSK9's ability to bind LDL reported here supports the notion that PCSK9-LDL association in the circulation inhibits PCSK9 activity.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Ying Yan ◽  
Shulai Lu ◽  
Shaoyou Jia ◽  
Qingzhe Dong ◽  
Lei Wang ◽  
...  

Abstract To explore the anti-atherosclerotic effects of recombinant high-density lipoproteins (rHDL) of apolipoprotein AI wild-type (apoA-Iwt), apolipoprotein AI Milano (apoA-IM), apolipoprotein AI (N74C) (apoA-I (N74C) )and apolipoprotein AV (apoA-V). We constructed rHDL liposomes (rHDLs), which included apoA-Iwt, apoA-IM, and apoA-I (N74C), followed by the synthesis of rHDLs, with the indicated ratios of apoA-Iwt, apoA-IM, apoA-I (N74C) and apoA-V. We investigated the anti-atherosclerotic effects by experiments including the DMPC clearance assay and experiments that assessed the in vitro antioxidation against low-density lipoprotein, the cellular uptake of oxidized low-density lipoprotein (oxLDL) and the in vitro intracellular lipid accumulation. Electron microscopy results revealed that as more apoA-V was present in rHDLs, the particle size of rHDLs was larger. The DMPC clearance assay subsequently showed that rHDL protein mixtures could promote DMPC turbidity clearance when more apoA-V was included in the reaction mixtures, with apoAV-rHDL showing the strongest turbidity clearance ability (P<0.05 vs AI-rHDL). In vitro antioxidation against low-density lipoprotein assays indicated that rHDLs containing apoA-V had increasing oxidation resistance against low-density lipoprotein (LDL) with higher apoA-V contents. Finally, cellular uptake of oxLDL and intracellular lipids suggested an apparent oxidation resistance to LDL oxidation in vitro and a reduced intracellular lipid accumulation in THP-1-derived macrophages, with AIM-rHDL demonstrating the greatest ability to decrease intracellular lipid accumulation. Different proportions of apolipoprotein A-I cysteine mutants and apolipoprotein A-V of rHDL changed the lipid binding capacity, particle size, and antioxidant capacity. These changes may show a beneficial effect of rHDL on atherosclerosis.


1995 ◽  
Vol 41 (1) ◽  
pp. 147-152 ◽  
Author(s):  
P S Roheim ◽  
B F Asztalos

Abstract Correlation between coronary heart disease and lipoprotein size and composition is well documented. Within the low-density lipoprotein (LDL) family the small LDL particles are associated with increased risk of coronary heart disease. These particles also have increased apolipoprotein (apo) B content. The appearance of these small LDL particles is the manifestation of complex alteration of plasma lipoprotein metabolism. The LDL size is influenced by genetic, endocrine, and environmental factors. Within the high-density lipoprotein (HDL) family the decrease of larger HDL2 particles is associated with coronary heart disease. HDLs can also be separated according to their apoprotein composition into particles containing lipoprotein (Lp)A-I only and particles containing LpA-I and LpA-II. Most studies have shown that the concentration of LpA-I-only particles decreases in coronary heart disease. HDLs are remodeled in the circulation and this remodeling continues in vitro after the blood is taken. Therefore adequate preservation of blood samples is necessary.


2019 ◽  
Author(s):  
Samantha K. Sarkar ◽  
Alexander C.Y. Foo ◽  
Angela Matyas ◽  
Tanja Kosenko ◽  
Natalie K. Goto ◽  
...  

SUMMARYProprotein convertase subtilisin/kexin type-9 (PCSK9) is a ligand of low-density lipoprotein receptor (LDLR) that promotes LDLR degradation in late endosomes/lysosomes. In human plasma, 30-40% of PCSK9 is bound to LDL particles; however, the physiological significance of this interaction remains unknown. LDL binding in vitro requires a disordered N-terminal region in PCSK9’s prodomain. Here we report that peptides corresponding to a predicted amphipathic α-helix in the prodomain N-terminus adopted helical structure in a membrane-mimetic environment; this effect was greatly enhanced by an R46L substitution representing an athero-protective PCSK9 loss-of-function mutation. A helix-disrupting proline substitution within the putative α-helical motif in full-length PCSK9 lowered LDL binding affinity >5-fold. Modeling studies suggested the transient α-helix aligns multiple polar residues to interact with positive-charged residues in the C-terminal domain. Gain-of-function PCSK9 mutations associated with familial hypercholesterolemia (FH) and clustered at the predicted interdomain interface (R469W, R496W, F515L) inhibited LDL binding, which was abolished for the R496W variant. These studies inform on allosteric conformational changes in PCSK9 required for high-affinity binding to LDL particles. Moreover, we report the initial identification of FH-associated mutations that diminish the ability of PCSK9 to bind LDL, supporting that LDL association in the circulation inhibits PCSK9 activity.


Author(s):  
Dean A. Handley ◽  
Cynthia M. Arbeeny ◽  
Larry D. Witte

Low density lipoproteins (LDL) are the major cholesterol carrying particles in the blood. Using cultured cells, it has been shown that LDL particles interact with specific surface receptors and are internalized via a coated pit-coated vesicle pathway for lysosomal catabolism. This (Pathway has been visualized using LDL labeled to ferritin or colloidal gold. It is now recognized that certain lysomotropic agents, such as chloroquine, inhibit lysosomal enzymes that degrade protein and cholesterol esters. By interrupting cholesterol ester hydrolysis, chloroquine treatment results in lysosomal accumulation of cholesterol esters from internalized LDL. Using LDL conjugated to colloidal gold, we have examined the ultrastructural effects of chloroquine on lipoprotein uptake by normal cultured fibroblasts.


2012 ◽  
Vol 2 (1) ◽  
pp. 1 ◽  
Author(s):  
Hidekatsu Yanai ◽  
Hiroshi Yoshida ◽  
Yuji Hirowatari ◽  
Norio Tada

Characteristics for the serum lipid abnormalities in the obesity/metabolic syndrome are elevated fasting, postprandial triglyceride (TG), and decreased high-density lipoprotein-cholesterol (HDL-C). Diacylglycerol (DAG) oil ingestion has been reported to ameliorate postprandial hyperlipidemia and prevent obesity by increasing energy expenditure, due to the intestinal physiochemical dynamics that differ from triacylglycerol (TAG). Our study demonstrated that DAG suppresses postprandial increase in TG-rich lipoprotein, very low-density lipoprotein (VLDL), and insulin, as compared with TAG in young, healthy individuals. Interestingly, our study also presented that DAG significantly increases plasma serotonin, which is mostly present in the intestine, and mediates thermogenesis, proposing a possible mechanism for a postprandial increase in energy expenditure by DAG. Our other study demonstrated that DAG suppresses postprandial increase in TG, VLDL-C, and remnant-like particle-cholesterol, in comparison with TAG in an apolipoprotein C-II deficient subject, suggesting that DAG suppresses postprandial TG-rich lipoprotein independently of lipoprotein lipase. Further, to understand the molecular mechanisms for DAG-mediated increase in serotonin and energy expenditure, we studied the effects of 1-monoacylglycerol and 2-monoacylglycerol, distinct digestive products of DAG and TAG, respectively, on serotonin release from the Caco-2 cells, the human intestinal cell line. We also studied effects of 1- and 2-monoacylglycerol, and serotonin on the expression of mRNA associated with β-oxidation, fatty acids metabolism, and thermogenesis, in the Caco-2 cells. 1-monoacylglycerol significantly increased serotonin release from the Caco-2 cells, compared with 2-monoacylglycerol by approximately 40%. The expression of mRNA of acyl-CoA oxidase (ACO), fatty acid translocase (FAT), and uncoupling protein-2 (UCP-2), was significantly higher in 1-MOG-treated Caco-2 cells, than 2-MOG-treated cells. The expression of mRNA of ACO, medium-chain acyl-CoA dehydrogenase, FAT, and UCP-2, was significantly elevated in serotonin-treated Caco-2 cells, compared to cells incubated without serotonin. In conclusion, our clinical and in vitro studies suggested a possible therapeutic application of DAG for obesity, and obesity-related metabolic disorders.Key words: Diacylglycerol, intestine, obesity, serotonin, thermogenesis


2019 ◽  
Vol 17 (3) ◽  
pp. 270-277 ◽  
Author(s):  
Thomas F. Whayne

The non-traditional cardiovascular (CV) risk factors that appear to be of most clinical interest include: apolipoprotein A (ApoA), apolipoprotein B (ApoB), high-sensitivity C-Reactive protein (hsCRP), homocysteine, interleukin 1 (IL1), lipoprotein (a) [Lp(a)], the density of low-density lipoprotein (LDL) particles, the LDL particle number, tissue/tumor necrosis factor-α (TNF-α) and uric acid. These non-traditional risk factors may be of value in adding further confirmation and attention to suspected significant CV risk. They can also provide a better understanding of current concepts of atherogenesis (e.g. various potential mechanisms associated with inflammation) as an etiology and in guiding current plus future therapies. In the mid-20th century, atherosclerosis and CV disease were considered mechanistic occurrences with essentially no attention to possible metabolic and molecular etiologies. Therefore, the only treatments then centered around mainly surgical procedures to try to improve blood flow, first with peripheral arterial disease (PAD) and later coronary artery disease (CAD). Now, failure to treat CV risk factors, especially where there is good evidence-based medicine, as in the case of statins for high CV risk patients, is considered medical negligence. Nevertheless, many problems remain to be solved regarding atherosclerosis prevention and treatment.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1952
Author(s):  
Max Wacker ◽  
Jan Riedel ◽  
Heike Walles ◽  
Maximilian Scherner ◽  
George Awad ◽  
...  

In this study, we contrast the impacts of surface coating bacterial nanocellulose small-diameter vascular grafts (BNC-SDVGs) with human albumin, fibronectin, or heparin–chitosan upon endothelialization with human saphenous vein endothelial cells (VEC) or endothelial progenitor cells (EPC) in vitro. In one scenario, coated grafts were cut into 2D circular patches for static colonization of a defined inner surface area; in another scenario, they were mounted on a customized bioreactor and subsequently perfused for cell seeding. We evaluated the colonization by emerging metabolic activity and the preservation of endothelial functionality by water soluble tetrazolium salts (WST-1), acetylated low-density lipoprotein (AcLDL) uptake assays, and immune fluorescence staining. Uncoated BNC scaffolds served as controls. The fibronectin coating significantly promoted adhesion and growth of VECs and EPCs, while albumin only promoted adhesion of VECs, but here, the cells were functionally impaired as indicated by missing AcLDL uptake. The heparin–chitosan coating led to significantly improved adhesion of EPCs, but not VECs. In summary, both fibronectin and heparin–chitosan coatings could beneficially impact the endothelialization of BNC-SDVGs and might therefore represent promising approaches to help improve the longevity and reduce the thrombogenicity of BNC-SDVGs in the future.


Sign in / Sign up

Export Citation Format

Share Document