scholarly journals The tyrosine phosphatase DEP-1 induces cytoskeletal rearrangements, aberrant cell-substratum interactions and a reduction in cell proliferation

2004 ◽  
Vol 117 (4) ◽  
pp. 609-618 ◽  
Author(s):  
S. Kellie
1999 ◽  
pp. 272-278 ◽  
Author(s):  
F Dotta ◽  
S Dionisi ◽  
V Viglietta ◽  
C Tiberti ◽  
MC Matteoli ◽  
...  

The target molecules of the T-cell response in type 1 diabetes, despite their pathogenic importance, remain largely uncharacterized, especially in humans. Interestingly, molecules such as insulin and glutamic acid decarboxylase (GAD) have been shown to be a target not only of autoantibodies, but also of autoreactive T-lymphocytes both in man and in the non-obese diabetic (NOD) mouse. In the present study we aimed to determine the existence of a specific T-cell response towards the insulinoma-associated protein 2 (IA-2) islet tyrosine phosphatase, a recently identified autoantigen which is the target of autoantibodies strongly associated with diabetes development. Human recombinant IA-2 produced in Escherichia coli, was tested for its reactivity with peripheral blood lymphocytes obtained from 16 newly diagnosed type 1 diabetic patients and from 25 normal controls, 15 of whom were HLA-DR-matched. A T-cell proliferation assay was performed in triplicate employing freshly isolated cells in the absence or in the presence of the antigen to be tested (at two different concentrations: 2 microg/ml and 10 microg/ml). A specific T-cell proliferation (defined as a stimulation index (S.I.) >/=3) was observed against IA-2 used at a concentration of 10 microg/ml (but not of 2 microg/ml) in 8/16 diabetic patients, in 1/15 HLA-DR-matched control subjects (P<0.01 by Fisher exact test) and in 0/10 of the remaining normal individuals. A statistically significant difference (P<0.003 by Mann-Whitney U test) was also observed in S.I. values between patients (3.1+/-1.4) and HLA-DR-matched controls (1.7+/-0.54) employing IA-2 at a concentration of 10 microg/ml. However, when IA-2 was used at a concentration of 2 microg/ml, the difference in S. I. between patients (1.65+/-0.8) and controls (1.0+/-0.3) did not reach statistical significance. In conclusion, these data show the presence of a specific, dose-dependent T-lymphocyte response against the IA-2 islet tyrosine phosphatase at the onset of type 1 diabetes. Consequently, this molecule appears to be a target not only at the B-lymphocyte but also at the T-lymphocyte level, reinforcing the potential pathogenic role of this autoantigen in the islet destructive process.


2000 ◽  
Vol 113 (17) ◽  
pp. 3117-3123 ◽  
Author(s):  
C. Wadham ◽  
J.R. Gamble ◽  
M.A. Vadas ◽  
Y. Khew-Goodall

Pez is a non-transmembrane tyrosine phosphatase with homology to the FERM (4.1, ezrin, radixin, moesin) family of proteins. The subcellular localisation of Pez in endothelial cells was found to be regulated by cell density and serum concentration. In confluent monolayers Pez was cytoplasmic, but in cells cultured at low density Pez was nuclear, suggesting that it is a nuclear protein in proliferating cells. This notion is supported by the loss of nuclear Pez when cells are serum-starved to induce quiescence, and the rapid return of Pez to the nucleus upon refeeding with serum to induce proliferation. Vascular endothelial cells normally exist as a quiescent confluent monolayer but become proliferative during angiogenesis or upon vascular injury. Using a ‘wound’ assay to mimic these events in vitro, Pez was found to be nuclear in the cells that had migrated and were proliferative at the ‘wound’ edge. TGFbeta, which inhibits cell proliferation but not migration, inhibited the translocation of Pez to the nucleus in the cells at the ‘wound’ edge, further strengthening the argument that Pez plays a role in the nucleus during cell proliferation. Together, the data presented indicate that Pez is a nuclear tyrosine phosphatase that may play a role in cell proliferation.


2002 ◽  
Vol 32 (5) ◽  
pp. 713-722 ◽  
Author(s):  
Yannick Bellec ◽  
Yaël Harrar ◽  
Christelle Butaeye ◽  
Sylvain Darnet ◽  
Catherine Bellini ◽  
...  

Endocrinology ◽  
1997 ◽  
Vol 138 (9) ◽  
pp. 3756-3763 ◽  
Author(s):  
Tullio Florio ◽  
Antonella Scorziello ◽  
Stefano Thellung ◽  
Salvatore Salzano ◽  
Maria Teresa Berlingieri ◽  
...  

Abstract The effects of the stable expression of E1A and/or middle T oncogenes on the proliferative activity of PC Cl3 normal thyroid cells are reported. The proliferation of PC Cl3 cells is mainly regulated by insulin and TSH in a stimulatory way and by somatostatin in an inhibitory fashion. The transformed cell lines, named PC Py and PC E1A Py, show an autonomous pattern of proliferation. The blockade of phosphotyrosine phosphatase activity with vanadate increased the proliferation rate of PC Cl3 under basal and stimulated conditions and completely prevented the inhibitory activity of somatostatin, suggesting that in PC Cl3 cells, a tonic tyrosine phosphatase activity regulates basal and stimulated proliferation, and that a somatostatin-dependent increase in this activity may represent a cytostatic signal. Conversely, in both PC Py and PC E1A Py, vanadate did not modify basal and stimulated proliferation. We analyzed tyrosine phosphatase activity in the different cell lines basally and under conditions leading to the arrest of cell proliferation: confluence (contact inhibition), growth factor deprivation (starvation), and somatostatin treatment. Under basal conditions, tyrosine phosphatase activity was significantly lower in PC Py and PC E1APy cell lines than that in the normal cells. The inhibition of the proliferation induced by contact inhibition or somatostatin treatment was accompanied by an increase in tyrosine phosphatase activity only in PC Cl3 cells. The reduction in tyrosine phosphatase activity in PC E1APy cells correlated with a significant reduction in the expression of R-PTPη, a tyrosine phosphatase cloned from PC Cl3 cells. Conversely, the expression of another receptor-like PTP, PTPμ, was unchanged. Thus, PTPη may be a candidate to mediate inhibitory signals (i.e. activation of somatostatin receptors or cell to cell contact) on the proliferative activity of PC Cl3 cells, and the reduction of its expression in the transformed cell lines may lead to an alteration in the control of cell proliferation.


Blood ◽  
2006 ◽  
Vol 107 (10) ◽  
pp. 4130-4138 ◽  
Author(s):  
Jean-François Honorat ◽  
Ashraf Ragab ◽  
Laurence Lamant ◽  
Georges Delsol ◽  
Jeannie Ragab-Thomas

Anaplastic large-cell lymphoma (ALCL) is frequently associated with the 2;5 translocation and expresses the NPM-ALK fusion protein, which possesses a constitutive tyrosine kinase activity. We analyzed SHP1 tyrosine phosphatase expression and activity in 3 ALK-positive ALCL cell lines (Karpas 299, Cost, and SU-DHL1) and in lymph node biopsies (n = 40). We found an inverse correlation between the level of NPM-ALK phosphorylation and SHP1 phosphatase activity. Pull-down and coimmunoprecipitation experiments demonstrated a SHP1/NPM-ALK association. Furthermore, confocal microscopy performed on ALCL cell lines and biopsy specimens showed the colocalization of the 2 proteins in cytoplasmic bodies containing Y664-phosphorylated NPM-ALK. Dephosphorylation of NPM-ALK by SHP1 demonstrated that NPM-ALK was a SHP1 substrate. Downregulation of SHP1 expression by RNAi in Karpas cells led to hyperphosphorylation of NPM-ALK, STAT3 activation, and increase in cell proliferation. Furthermore, SHP1 overexpression in 3T3 fibroblasts stably expressing NPM-ALK led to the decrease of NPM-ALK phosphorylation, lower cell proliferation, and tumor progression in nude mice. These findings show that SHP1 is a negative regulator of NPM-ALK signaling. The use of tissue microarrays revealed that 50% of ALK-positive ALCLs were positive for SHP1. Our results suggest that SHP1 could be a critical enzyme in ALCL biology and a potential therapeutic target.


2001 ◽  
Vol 12 (7) ◽  
pp. 2171-2183 ◽  
Author(s):  
Juan Ángel Fresno Vara ◽  
Ma Aurora Domı́nguez Cáceres ◽  
Augusto Silva ◽  
Jorge Martı́n-Pérez

Prolactin (PRL) is a pleiotropic cytokine promoting cellular proliferation and differentiation. Because PRL activates the Src family of tyrosine kinases (SFK), we have studied the role of these kinases in PRL cell proliferation signaling. PRL induced [3H]thymidine incorporation upon transient transfection of BaF-3 cells with the PRL receptor. This effect was inhibited by cotransfection with the dominant negative mutant of c-Src (K>A295/Y>F527, SrcDM). The role of SFK in PRL-induced proliferation was confirmed in the BaF-3 PRL receptor-stable transfectant, W53 cells, where PRL induced Fyn and Lyn activation. The SFK-selective inhibitors PP1/PP2 and herbimycin A blocked PRL-dependent cell proliferation by arresting the W53 cells in G1, with no evident apoptosis. In parallel, PP1/PP2 inhibited PRL induction of cell growth-related genes c-fos, c-jun, c-myc, andodc. These inhibitors have no effect on PRL-mediated activation of Ras/Mapk and Jak/Start pathways. In contrast, they inhibited the PRL-dependent stimulation of the SFKs substrate Sam68, the phosphorylation of the tyrosine phosphatase Shp2, and the PI3K-dependent Akt and p70S6k serine kinases. Consistently, transient expression of SrcDM in W53 cells also blocked PRL activation of Akt. These results demonstrate that activation of SFKs is required for cell proliferation induced by PRL.


2018 ◽  
Vol 47 (5) ◽  
pp. 1871-1882 ◽  
Author(s):  
Wei-Qiang Jia ◽  
Zhao-Tao Wang ◽  
Ming-Ming Zou ◽  
Jian-Hao Lin ◽  
Ye-Hai Li ◽  
...  

Background/Aims: As a natural antioxidant, verbascoside (VB) is proved to be a promising method for the treatment of oxidative-stress-related neurodegenerative diseases. Thus, this study aimed to investigate the effects of VB on glioblastoma cell proliferation, apoptosis, migration, and invasion as well as the mechanism involving signal transducer and activator of transcription 3 (STAT3) and Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1). Methods: U87 cells were assigned to different treatments. The MTT assay was used to test cell proliferation, flow cytometry was used to detect cell apoptosis, and a Transwell assay was used for cell migration and invasion. We analyzed the glioblastoma tumor growth in a xenograft mouse model. Western blot analysis was employed to determine the protein expression of related genes. Results: Glioblastoma cells exhibited decreased cell proliferation, migration, invasion, and increased apoptosis when treated with VB or TMZ. Western blot analysis revealed elevated SHP-1 expression and reduced phosphorylated (p)-STAT3 expression in glioblastoma cells treated with VB compared with controls. Correspondingly, in a xenograft mouse model treated with VB, glioblastoma tumor volume and growth were decreased. Glioblastoma xenograft tumors treated with VB showed elevated SHP-1, Bax, cleaved caspase-3, and cleaved PARP expression and reduced p-STAT3, Bcl-2, survivin, MMP-2, and MMP-9 expression. siRNA-SHP-1 inhibited the VB effects on glioblastoma. Conclusion: This study demonstrates that VB inhibits glioblastoma cell proliferation, migration, and invasion while promoting apoptosis via SHP-1 activation and inhibition of STAT3 phosphorylation.


Blood ◽  
2005 ◽  
Vol 105 (7) ◽  
pp. 2924-2932 ◽  
Author(s):  
Xiaoqing Lu ◽  
Hovav Nechushtan ◽  
Feiying Ding ◽  
Manuel F. Rosado ◽  
Rakesh Singal ◽  
...  

AbstractDiffuse large B-cell lymphomas (DLBCLs) can be subclassified into germinal center B-cell (GCB)-like and activated B-cell (ABC)-like tumors characterized by long and short survival, respectively. In contrast to ABC-like DLBCL, GCB-like tumors exhibit high expression of components of the interleukin 4 (IL-4) signaling pathway and of IL-4 target genes such as BCL6 and HGAL, whose high expression independently predicts better survival. These observations suggest distinct activity of the IL-4 signaling pathway in DLBCL subtypes. Herein, we demonstrate similar IL-4 expression but qualitatively different IL-4 effects on GCB-like and ABC-like DLBCL. In GCB-like DLBCL, IL-4 induces expression of its target genes, activates signal transducers and activators of transcription 6 (STAT6) signaling, and increases cell proliferation. In contrast, in the ABC-like DLBCL, IL-4 activates AKT, decreases cell proliferation by cell cycle arrest, and does not induce gene expression due to aberrant Janus kinase (JAK)-STAT6 signaling attributed to STAT6 dephosphorylation. We found distinct expression profiles of tyrosine phosphatases in DLBCL subtypes and identified putative STAT6 tyrosine phosphatases—protein tyrosine phosphatase nonreceptor type 1 (PTPN1) and PTPN2, whose expression is significantly higher in ABC-like DLBCL. These differences in tyrosine phosphatase expression might underlie distinct expression profiles of some of the IL-4 target genes and could contribute to a different clinical outcome of patients with GCB-like and ABC-like DLBCLs.


Sign in / Sign up

Export Citation Format

Share Document