scholarly journals Expression of neural cell adhesion molecule (N-CAM) in rat islets and its role in islet cell type segregation

1994 ◽  
Vol 107 (6) ◽  
pp. 1429-1436 ◽  
Author(s):  
V. Cirulli ◽  
D. Baetens ◽  
U. Rutishauser ◽  
P.A. Halban ◽  
L. Orci ◽  
...  

Endocrine cell types are non-randomly distributed within pancreatic islets of Langerhans. In the rat, insulin-secreting B-cells occupy the core of the islets and are surrounded by A-, D- and PP-cells, secreting glucagon, somatostatin and pancreatic polypeptide, respectively. Furthermore, dissociated islet cells have the ability in vitro to form aggregates with the same cell-type organization as native islets (pseudoislets). These observations suggest that a differential expression of cell adhesion molecules (CAMs) might characterize B- and non-B-cells (A-, D- and PP-cells), and be in part responsible for the establishment and maintenance of islet architecture. Indirect immunofluorescence using antibodies against CAMs and islet hormones was performed on serial sections of the splenic and duodenal parts of the rat pancreas. Staining for the Ca(2+)-dependent CAM E-cadherin was detected on both exocrine and endocrine tissue and was uniform over the entire islet section, in both pancreatic regions. By contrast, staining for the Ca(2+)-independent neural CAM (N-CAM) was restricted to endocrine tissue and nerve endings. Furthermore, N-CAM staining of endocrine cells was stronger in the islet periphery, a region composed mostly of non-B-cells. Serial sections demonstrate that cells staining strongly for N-CAM in the splenic part correspond to glucagon cells and in the duodenal part to pancreatic polypeptide cells. Within pseudoislets in vitro a stronger staining for N-CAM was also observed on peripheral cells, corresponding to non-B-cells.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Thu T. Duong ◽  
James Lim ◽  
Vidyullatha Vasireddy ◽  
Tyler Papp ◽  
Hung Nguyen ◽  
...  

Recombinant adeno-associated virus (rAAV), produced from a nonpathogenic parvovirus, has become an increasing popular vector for gene therapy applications in human clinical trials. However, transduction and transgene expression of rAAVs can differ acrossin vitroand ex vivo cellular transduction strategies. This study compared 11 rAAV serotypes, carrying one reporter transgene cassette containing a cytomegalovirus immediate-early enhancer (eCMV) and chicken beta actin (CBA) promoter driving the expression of an enhanced green-fluorescent protein (eGFP) gene, which was transduced into four different cell types: human iPSC, iPSC-derived RPE, iPSC-derived cortical, and dissociated embryonic day 18 rat cortical neurons. Each cell type was exposed to three multiplicity of infections (MOI: 1E4, 1E5, and 1E6 vg/cell). After 24, 48, 72, and 96 h posttransduction, GFP-expressing cells were examined and compared across dosage, time, and cell type. Retinal pigmented epithelium showed highest AAV-eGFP expression and iPSC cortical the lowest. At an MOI of 1E6 vg/cell, all serotypes show measurable levels of AAV-eGFP expression; moreover, AAV7m8 and AAV6 perform best across MOI and cell type. We conclude that serotype tropism is not only capsid dependent but also cell type plays a significant role in transgene expression dynamics.


Genome ◽  
1997 ◽  
Vol 40 (3) ◽  
pp. 379-385
Author(s):  
Klaus Werner Wolf

Kinetochore structure was examined in a total of 6 species from 5 different families of the Coleoptera using transmission electron microscopy of ultrathin serial sections. Metaphase spermatogonia and primary and secondary spermatocytes were studied in Tenebrio molitor (Tenebrionidae) to determine whether kinetochore structure varies depending on the cell type. In all three cell types, the kinetochore microtubules (MTs) were in direct contact with the chromosomal surface, and kinetochore plates were not detectable. In the other species, only metaphase I spermatocytes were examined. As in T. molitor, distinct kinetochore plates were also absent in Adelocera murina (Elateridae), Agapanthia villosoviridescens (Cerambycidae), and Coccinella septempunctata (Coccinellidae). However, bivalents in male meiosis of two representatives of the Chrysomelidae, Agelastica alni and Chrysolina graminis, showed roughly spherical kinetochores at their poleward surfaces. Microtubules were in contact with this material. Thus, although the present survey covers only a small number of species, it is clear that at least two kinetochore types occur in the Coleoptera. The cytological findings are discussed in the context of chromosome number and genome size variability in the Coleopteran families studied. It is suggested that properties of the kinetochores could play a role in karyotype evolution in the Coleoptera.Key words: bivalent, microtubule, meiosis, metaphase, spermatocyte.


1990 ◽  
Vol 259 (6) ◽  
pp. L415-L425 ◽  
Author(s):  
P. E. Roberts ◽  
D. M. Phillips ◽  
J. P. Mather

A novel epithelial cell from normal neonatal rat lung has been isolated, established, and maintained for multiple passages in the absence of serum, without undergoing crisis or senescence. By careful manipulation of the nutrition/hormonal microenvironment, we have been able to select, from a heterogeneous population, a single epithelial cell type that can maintain highly differentiated features in vitro. This cell type has characteristics of bronchiolar epithelial cells. A clonal line, RL-65, has been selected and observed for greater than 2 yr in continuous culture. It has been characterized by ultrastructural, morphological, and biochemical criteria. The basal medium for this cell line is Ham's F12/Dulbecco's modified Eagle's (DME) medium plus insulin (1 micrograms/ml), human transferrin (10 micrograms/ml), ethanolamine (10(-4) M), phosphoethanolamine (10(-4) M), selenium (2.5 x 10(-8) M), hydrocortisone (2.5 x 10(-7) M), and forskolin (5 microM). The addition of 150 micrograms/ml of bovine pituitary extract to the defined basal medium stimulates a greater than 10-fold increase in cell number and a 50- to 100-fold increase in thymidine incorporation. The addition of retinoic acid results in further enhancement of cell growth and complete inhibition of keratinization. We have demonstrated a strategy that may be applicable to isolating other cell types from the lung and maintaining their differentiated characteristics for long-term culture in vitro. Such a culture system promises to be a useful model in which to study cellular events associated with differentiation and proliferation in the lung and to better understand the molecular mechanisms involved in these events.


2021 ◽  
Author(s):  
Guoxun Wang ◽  
Christina Zarek ◽  
Tyron Chang ◽  
Lili Tao ◽  
Alexandria Lowe ◽  
...  

Gammaherpesviruses, such as Epstein-Barr virus (EBV), Kaposi’s sarcoma associated virus (KSHV), and murine γ-herpesvirus 68 (MHV68), establish latent infection in B cells, macrophages, and non-lymphoid cells, and can induce both lymphoid and non-lymphoid cancers. Research on these viruses has relied heavily on immortalized B cell and endothelial cell lines. Therefore, we know very little about the cell type specific regulation of virus infection. We have previously shown that treatment of MHV68-infected macrophages with the cytokine interleukin-4 (IL-4) or challenge of MHV68-infected mice with an IL-4-inducing parasite leads to virus reactivation. However, we do not know if all latent reservoirs of the virus, including B cells, reactivate the virus in response to IL-4. Here we used an in vivo approach to address the question of whether all latently infected cell types reactivate MHV68 in response to a particular stimulus. We found that IL-4 receptor expression on macrophages was required for IL-4 to induce virus reactivation, but that it was dispensable on B cells. We further demonstrated that the transcription factor, STAT6, which is downstream of the IL-4 receptor and binds virus gene 50 N4/N5 promoter in macrophages, did not bind to the virus gene 50 N4/N5 promoter in B cells. These data suggest that stimuli that promote herpesvirus reactivation may only affect latent virus in particular cell types, but not in others. Importance Herpesviruses establish life-long quiescent infections in specific cells in the body, and only reactivate to produce infectious virus when precise signals induce them to do so. The signals that induce herpesvirus reactivation are often studied only in one particular cell type infected with the virus. However, herpesviruses establish latency in multiple cell types in their hosts. Using murine gammaherpesvirus-68 (MHV68) and conditional knockout mice, we examined the cell type specificity of a particular reactivation signal, interleukin-4 (IL-4). We found that IL-4 only induced herpesvirus reactivation from macrophages, but not from B cells. This work indicates that regulation of virus latency and reactivation is cell type specific. This has important implications for therapies aimed at either promoting or inhibiting reactivation for the control or elimination of chronic viral infections.


2021 ◽  
Author(s):  
Zhengyu Ouyang ◽  
Nathanael Bourgeois ◽  
Eugenia Lyashenko ◽  
Paige Cundiff ◽  
Patrick F Cullen ◽  
...  

Induced pluripotent stem cell (iPSC) derived cell types are increasingly employed as in vitro model systems for drug discovery. For these studies to be meaningful, it is important to understand the reproducibility of the iPSC-derived cultures and their similarity to equivalent endogenous cell types. Single-cell and single-nucleus RNA sequencing (RNA-seq) are useful to gain such understanding, but they are expensive and time consuming, while bulk RNA-seq data can be generated quicker and at lower cost. In silico cell type decomposition is an efficient, inexpensive, and convenient alternative that can leverage bulk RNA-seq to derive more fine-grained information about these cultures. We developed CellMap, a computational tool that derives cell type profiles from publicly available single-cell and single-nucleus datasets to infer cell types in bulk RNA-seq data from iPSC-derived cell lines.


Blood ◽  
2009 ◽  
Vol 114 (21) ◽  
pp. 4703-4712 ◽  
Author(s):  
Jennifer L. Costantini ◽  
Samuel M. S. Cheung ◽  
Sen Hou ◽  
Hongzhao Li ◽  
Sam K. Kung ◽  
...  

Abstract Tandem pleckstrin homology domain proteins (TAPPs) are recruited to the plasma membrane via binding to phosphoinositides produced by phosphoinositide 3-kinases (PI3Ks). Whereas PI3Ks are critical for B-cell activation, the functions of TAPP proteins in B cells are unknown. We have identified 40 potential interaction partners of TAPP2 in B cells, including proteins involved in cytoskeletal rearrangement, signal transduction and endocytic trafficking. The association of TAPP2 with the cytoskeletal proteins utrophin and syntrophin was confirmed by Western blotting. We found that TAPP2, syntrophin, and utrophin are coexpressed in normal human B cells and B-chronic lymphocytic leukemia (B-CLL) cells. TAPP2 and syntrophin expression in B-CLL was variable from patient to patient, with significantly higher expression in the more aggressive disease subset identified by zeta-chain–associated protein kinase of 70 kDa (ZAP70) expression and unmutated immunoglobulin heavy chain (IgH) genes. We examined whether TAPP can regulate cell adhesion, a known function of utrophin/syntrophin in other cell types. Expression of membrane-targeted TAPP2 enhanced B-cell adhesion to fibronectin and laminin, whereas PH domain–mutant TAPP2 inhibited adhesion. siRNA knockdown of TAPP2 or utrophin, or treatment with PI3K inhibitors, significantly inhibited adhesion. These findings identify TAPP2 as a novel link between PI3K signaling and the cytoskeleton with potential relevance for leukemia progression.


2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


1992 ◽  
Vol 12 (5) ◽  
pp. 2315-2321
Author(s):  
M A Campbell ◽  
B M Sefton

Treatment of B lymphocytes with antibodies to membrane immunoglobulin (Ig) stimulates protein tyrosine phosphorylation. We have examined the phosphorylation in vitro of proteins associated with membrane Ig. The Src family protein tyrosine kinases p53/56lyn, p59fyn, and p56lck are associated with membrane Ig in spleen B cells and B-cell lines and undergo phosphorylation in vitro. The pattern of expression of Src family protein tyrosine kinases in B cells varied. Our studies suggest that multiple kinases can potentially interact with membrane Ig and that within any one B-cell type, all of the Src family kinases expressed can be found in association with membrane Ig. We also observed that the Ig-associated Ig alpha protein, multiple forms of Ig beta, and proteins of 100 and 25 kDa were tyrosine phosphorylated in vitro. The 100- and 25-kDa proteins remain unidentified.


2021 ◽  
Vol 27 ◽  
Author(s):  
Aline Araujo Zuma ◽  
Wanderley de Souza

: Chagas disease is a Neglected Tropical Disease (NTD), and although endemic in Latin America, affects around 6-7 million people infected worldwide. The treatment of Chagas disease is based on benznidazole and nifurtimox, which are the only available drugs. However, they are not effective during the chronic phase and cause several side effects. Furthermore, BZ promotes cure in 80% of the patients in the acute phase, but the cure rate drops to 20% in adults in the chronic phase of the disease. In this review, we present several studies published in the last six years, which describes the antiparasitic potential of distinct drugs, from the synthesis of new compounds aiming to target the parasite, as well as the repositioning and the combination of drugs. We highlight several compounds for having shown results that are equivalent or superior to BZ, which means that they should be further studied, either in vitro or in vivo. Furthermore, we stand out the differences in the effects of BZ on the same strain of T. cruzi, which might be related to methodological differences such as parasite and cell ratios, host cell type and the time of adding the drug. In addition, we discuss the wide variety of strains and also the cell types used as a host cell, which makes it difficult to compare the trypanocidal effect of the compounds.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4415-4424 ◽  
Author(s):  
Jon Lømo ◽  
Heidi Kiil Blomhoff ◽  
Sten Eirik Jacobsen ◽  
Stanislaw Krajewski ◽  
John C. Reed ◽  
...  

Abstract Interleukin-13 (IL-13) is a novel T-cell–derived cytokine with IL-4–like effects on many cell types. In human B lymphocytes, IL-13 induces activation, stimulates proliferation in combination with anti-IgM or anti-CD40 antibodies, and directs Ig isotype switching towards IgE and IgG4 isotypes. We show here that IL-13 also regulates human B-cell apoptosis. IL-13 reduced spontaneous apoptosis of peripheral blood B cells in vitro, as shown by measurement of DNA fragmentation using the TUNEL and Nicoletti assays. The inhibition of cell death by IL-13 alone was significant but modest, but was potently enhanced in combination with CD40 ligand (CD40L), a survival stimulus for B cells by itself. Interestingly, IL-13 increased the expression of CD40 on peripheral blood B cells, providing a possible mechanism for the observed synergy. IL-13 alone was a less potent inhibitor of apoptosis than IL-4. Moreover, there was no additive effect of combining IL-4 and IL-13 at supraoptimal concentrations, which is consistent with the notion that the IL-4 and IL-13 binding sites share a common signaling subunit. The combination of IL-13 with CD40L augmented the expression of the Bcl-2 homologues Bcl-xL and Mcl-1, suggesting this as a possible intracellular mechanism of induced survival. By contrast, levels of Bcl-2, and two other Bcl-2 family members, Bax and Bak, remained unaltered. Given the importance of the CD40-CD40L interaction in B-cell responses, these results suggest a significant role of IL-13 in the regulation of B-cell apoptosis.


Sign in / Sign up

Export Citation Format

Share Document