Ezrin has properties to self-associate at the plasma membrane

1994 ◽  
Vol 107 (9) ◽  
pp. 2509-2521 ◽  
Author(s):  
C. Andreoli ◽  
M. Martin ◽  
R. Le Borgne ◽  
H. Reggio ◽  
P. Mangeat

Ezrin, a member of a family of proteins involved in the interaction of the microfilament cytoskeleton with the plasma membrane, plays a role in membrane translocation in gastric parietal cells (Hanzel, D., Reggio, H., Bretscher, A., Forte, J. G. and Mangeat, P. (1991). EMBO J. 10, 2363–2373). Human ezrin was expressed in and purified from Escherichia coli. It possesses all the major biophysical, immunological and physiological properties of natural ezrin. Upon microinjection in live gastric HGT-1 cells, ezrin was incorporated into the dorsal microvilli, a site where the endogeneous protein is localized. By coimmunoprecipitation and ezrin-affinity assays, two HGT-1 cell proteins of 77 and 72 kDa behaved as ezrin-binding proteins. In enriched gastric apical membranes, 125I-ezrin labelled proteins of 80, 77 and 72 kDa by overlay assay. The 80 kDa protein was identified as ezrin and the 77 and 72 kDa proteins as gastric forms of proteins structurally related to ezrin, such as radixin and moesin. In insect cells infected with a recombinant baculovirus, one-third of over-expressed ezrin accumulated at the plasma membrane. Ezrin bound a 77 kDa endogenous peripheral membrane protein, behaving as an insect counterpart of the mammalian ezrin family. In addition to the respective role of the amino- and carboxyl-terminal domains of ezrin in linking the membrane and the cytoskeleton (Algrain, M., Turunen, O., Vaheri, A., Louvard, D. and Arpin, M. (1993). J. Cell Biol. 120, 129–139), both domains interacted synergistically in a salt-dependent manner to trigger self-association of ezrin. Ezrin's self-association properties could represent another way of regulating the number of ezrin molecules bound at specific membrane sites.

2020 ◽  
Author(s):  
Svenja C. Saile ◽  
Frank M. Ackermann ◽  
Sruthi Sunil ◽  
Adam Bayless ◽  
Eva Stöbbe ◽  
...  

AbstractActivation of intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) results in immunity and a localized cell death response of infected cells. Cell death activity of many NLRs requires oligomerization and in some cases plasma membrane (PM) localization. However, the exact mechanisms underlying PM localization of NLRs lacking recognizable N- or C-terminal lipidation motifs or predicted transmembrane domains remains elusive. Here we show that the PM localization and stability of members of the RPW8-like coiled-coil (CCR) domain NLRs (RNLs) and a CC-type NLR (CNL) depend on the interaction with PM phospholipids. Depletion of phosphatidylinositol-4-phosphate (PI4P) from the PM led to a mislocalization of the analyzed NLRs and consequently inhibited their cell death activity. We further demonstrate activation-dependent self-association of cell death inducing RNLs. Our results provide new insights into the molecular mechanism of NLR PM localization and defines an important role of phospholipids for CNL and RNL activity during immunity.


Scientifica ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Jose J. G. Marin

The liver plays a crucial role in the detoxification of drugs used in the treatment of many diseases. The liver itself is the target for drugs aimed to modify its function or to treat infections and tumours affecting this organ. Both detoxification and pharmacological processes occurring in the liver require the uptake of the drug by hepatic cells and, in some cases, the elimination into bile. These steps have been classified as detoxification phase 0 and phase III, respectively. Since most drugs cannot cross the plasma membrane by simple diffusion, the involvement of transporters is mandatory. Several members of the superfamilies of solute carriers (SLC) and ATP-binding cassette (ABC) proteins, with a minor participation of other families of transporters, account for the uptake and efflux, respectively, of endobiotic and xenobiotic compounds across the basolateral and apical membranes of hepatocytes and cholangiocytes. These transporters are also involved in the sensitivity and refractoriness to the pharmacological treatment of liver tumours. An additional interesting aspect of the role of plasma membrane transporters in liver pharmacology regards the promiscuity of many of these carriers, which accounts for a variety of drug-drug, endogenous substances-drug and food components-drug interactions with clinical relevance.


1984 ◽  
Vol 220 (1) ◽  
pp. 43-50 ◽  
Author(s):  
P H Reinhart ◽  
W M Taylor ◽  
F L Bygrave

The effect of alpha-adrenergic agonists on Ca2+ fluxes was examined in the perfused rat liver by using a combination of Ca2+-electrode and 45Ca2+-uptake techniques. We showed that net Ca2+ fluxes can be described by the activities of separate Ca2+-uptake and Ca2+-efflux components, and that alpha-adrenergic agonists modulate the activity of both components in a time-dependent manner. Under resting conditions, Ca2+-uptake and -efflux activities are balanced, resulting in Ca2+ cycling across the plasma membrane. The alpha-adrenergic agonists vasopressin and angiotensin, but not glucagon, stimulate the rate of both Ca2+ efflux and Ca2+ uptake. During the first 2-3 min of alpha-agonist administration the effect on the efflux component is the greater, the net effect being efflux of Ca2+ from the cell. After 3-4 min of phenylephrine treatment, net Ca2+ movements are essentially complete, however, the rate of Ca2+ cycling is significantly increased. After removal of the alpha-agonist a large stimulation of the rate of Ca2+ uptake leads to the net accumulation of Ca2+ by the cell. The potential role of these Ca2+ flux changes in the expression of alpha-adrenergic-agonist-mediated effects is discussed.


1993 ◽  
Vol 292 (2) ◽  
pp. 445-450 ◽  
Author(s):  
A Kapus ◽  
K Suszták ◽  
E Ligeti

Possible factors regulating the opening of and the rate of H+ flux through a recently described, Cd(2+)-sensitive, phorbol ester- and arachidonic acid (AA)-activatable H(+)-conducting pathway in the plasma membrane of neutrophil granulocytes were investigated. (1) The phospholipase A2 blocker p-bromophenacyl bromide (BPB) inhibited the phorbol 12-myristate 13-acetate (PMA)-induced activation of this channel in a concentration-dependent manner (IC50, 4 microM). (2) Neither BPB nor the protein kinase C (PKC) inhibitor staurosporine influenced the AA-elicited stimulation of this route. (3) Intracellular acidification (cytoplasmic pH below 6.9) itself is capable of activating an electrogenic, Cd(2+)-sensitive H+ efflux indicating that protons can open up this route in the absence of any other stimulator. (4) PMA significantly decreases the intracellular H+ concentration ([H+]i) threshold for the opening of the channel, thus providing a conductive state at resting pH values, and elevates the rate of H+ efflux at any [H+]i. (5) Changes in external pH also modify the operation of the channel: above an extracellular pH (pH(o)) value of 7.4, the H(+)-flux/driving force relationship is approx. 5-fold greater than below this value. Our results suggest a multifactorial regulation of the electrogenic H+ channel: most probably PKC activates the channel indirectly, via stimulation of phospholipase A2 that subsequently liberates AA. In addition to this, the channel conductance seems to be promoted by internal H+ and inhibited by external H+.


2005 ◽  
Vol 16 (1) ◽  
pp. 231-237 ◽  
Author(s):  
Filippo Acconcia ◽  
Paolo Ascenzi ◽  
Alessio Bocedi ◽  
Enzo Spisni ◽  
Vittorio Tomasi ◽  
...  

A fraction of the nuclear estrogen receptor α (ERα) is localized to the plasma membrane region of 17β-estradiol (E2) target cells. We previously reported that ERα is a palmitoylated protein. To gain insight into the molecular mechanism of ERα residence at the plasma membrane, we tested both the role of palmitoylation and the impact of E2 stimulation on ERα membrane localization. The cancer cell lines expressing transfected or endogenous human ERα (HeLa and HepG2, respectively) or the ERα nonpalmitoylable Cys447Ala mutant transfected in HeLa cells were used as experimental models. We found that palmitoylation of ERα enacts ERα association with the plasma membrane, interaction with the membrane protein caveolin-1, and nongenomic activities, including activation of signaling pathways and cell proliferation (i.e., ERK and AKT activation, cyclin D1 promoter activity, DNA synthesis). Moreover, E2 reduces both ERα palmitoylation and its interaction with caveolin-1, in a time- and dose-dependent manner. These data point to the physiological role of ERα palmitoylation in the receptor localization to the cell membrane and in the regulation of the E2-induced cell proliferation.


Endocrinology ◽  
2010 ◽  
Vol 151 (10) ◽  
pp. 4894-4907 ◽  
Author(s):  
Masha Dobkin-Bekman ◽  
Liat Rahamim Ben-Navi ◽  
Boris Shterntal ◽  
Ludmila Sviridonov ◽  
Fiorenza Przedecki ◽  
...  

GnRH is the first key hormone of reproduction. The role of protein kinase C (PKC) isoforms in GnRH-stimulated MAPK [ERK and Jun N-terminal kinase (JNK)] was examined in the αT3-1 and LβT2 gonadotrope cells. Incubation of the cells with GnRH resulted in a protracted activation of ERK1/2 and a slower and more transient activation of JNK1/2. Gonadotropes express conventional PKCα and conventional PKCβII, novel PKCδ, novel PKCε, and novel PKCθ, and atypical PKC-ι/λ. The use of green fluorescent protein-PKC constructs revealed that GnRH induced rapid translocation of PKCα and PKCβII to the plasma membrane, followed by their redistribution to the cytosol. PKCδ and PKCε localized to the cytoplasm and Golgi, followed by the rapid redistribution by GnRH of PKCδ to the perinuclear zone and of PKCε to the plasma membrane. Interestingly, PKCα, PKCβII, and PKCε translocation to the plasma membrane was more pronounced and more prolonged in phorbol-12-myristate-13-acetate (PMA) than in GnRH-treated cells. The use of selective inhibitors and dominant-negative plasmids for the various PKCs has revealed that PKCβII, PKCδ, and PKCε mediate ERK2 activation by GnRH, whereas PKCα, PKCβII, PKCδ, and PKCε mediate ERK2 activation by PMA. Also, PKCα, PKCβII, PKCδ, and PKCε are involved in GnRH and PMA stimulation of JNK1 in a cell-context-dependent manner. We present preliminary evidence that persistent vs. transient redistribution of selected PKCs or redistribution of a given PKC to the perinuclear zone vs. the plasma membrane may dictate its selective role in ERK or JNK activation. Thus, we have described the contribution of selective PKCs to ERK and JNK activation by GnRH.


2015 ◽  
Vol 43 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Masaki Fukata ◽  
Atsushi Sekiya ◽  
Tatsuro Murakami ◽  
Norihiko Yokoi ◽  
Yuko Fukata

Precise regulation of protein assembly at specialized membrane domains is essential for diverse cellular functions including synaptic transmission. However, it is incompletely understood how protein clustering at the plasma membrane is initiated, maintained and controlled. Protein palmitoylation, a common post-translational modification, regulates protein targeting to the plasma membrane. Such modified proteins are enriched in these specialized membrane domains. In this review, we focus on palmitoylation of PSD-95, which is a major postsynaptic scaffolding protein and makes discrete postsynaptic nanodomains in a palmitoylation-dependent manner and discuss a determinant role of local palmitoylation cycles in creating highly localized hotspots at the membrane where specific proteins concentrate to organize functional domains.


2020 ◽  
Vol 71 (10) ◽  
pp. 2922-2932 ◽  
Author(s):  
Wenxiu Ye ◽  
Eigo Ando ◽  
Mohammad Saidur Rhaman ◽  
Md Tahjib-Ul-Arif ◽  
Eiji Okuma ◽  
...  

Abstract The glucosinolate–myrosinase system is a well-known defense system that has been shown to induce stomatal closure in Brassicales. Isothiocyanates are highly reactive hydrolysates of glucosinolates, and an isothiocyanate, allyl isothiocyanate (AITC), induces stomatal closure accompanied by elevation of free cytosolic Ca2+ concentration ([Ca2+]cyt) in Arabidopsis. It remains unknown whether AITC inhibits light-induced stomatal opening. This study investigated the role of Ca2+ in AITC-induced stomatal closure and inhibition of light-induced stomatal opening. AITC induced stomatal closure and inhibited light-induced stomatal opening in a dose-dependent manner. A Ca2+ channel inhibitor, La3+, a Ca2+chelator, EGTA, and an inhibitor of Ca2+ release from internal stores, nicotinamide, inhibited AITC-induced [Ca2+]cyt elevation and stomatal closure, but did not affect inhibition of light-induced stomatal opening. AITC activated non-selective Ca2+-permeable cation channels and inhibited inward-rectifying K+ (K+in) channels in a Ca2+-independent manner. AITC also inhibited stomatal opening induced by fusicoccin, a plasma membrane H+-ATPase activator, but had no significant effect on fusicoccin-induced phosphorylation of the penultimate threonine of H+-ATPase. Taken together, these results suggest that AITC induces Ca2+ influx and Ca2+ release to elevate [Ca2+]cyt, which is essential for AITC-induced stomatal closure but not for inhibition of K+in channels and light-induced stomatal opening.


2015 ◽  
Vol 290 (34) ◽  
pp. 21076-21085 ◽  
Author(s):  
Yong-Bae Kim ◽  
Yong Jae Shin ◽  
Adhiraj Roy ◽  
Jeong-Ho Kim

Upon growth factor stimulation, PAK1 is recruited to the plasma membrane and activated by a mechanism that requires its phosphorylation at Ser-223 by the protein kinase CK2. However, the upstream signaling molecules that regulate this phosphorylation event are not clearly defined. Here, we demonstrate a major role of the CK2α-interacting protein CKIP-1 in activation of PAK1. CK2α, CKIP-1, and PAK1 are translocated to membrane ruffles in response to the epidermal growth factor (EGF), where CKIP-1 mediates the interaction between CK2α and PAK1 in a PI3K-dependent manner. Consistently, PAK1 mediates phosphorylation and modulation of the activity of p41-Arc, one of its plasma membrane substrate, in a fashion that requires PI3K and CKIP-1. Moreover, CKIP-1 knockdown or PI3K inhibition suppresses PAK1-mediated cell migration and invasion, demonstrating the physiological significance of the PI3K-CKIP-1-CK2-PAK1 signaling pathway. Taken together, these findings identify a novel mechanism for the activation of PAK1 at the plasma membrane, which is critical for cell migration and invasion.


1998 ◽  
Vol 274 (6) ◽  
pp. C1667-C1673 ◽  
Author(s):  
Nisha J. D’Silva ◽  
Kerry L. Jacobson ◽  
Sabrina M. Ott ◽  
Eileen L. Watson

Rap1 has recently been identified on the secretory granule membrane and plasma membrane of rat parotid acinar cells (N. J. D’Silva, D. DiJulio, C. B. Belton, K. L. Jacobson, and E. L. Watson. J. Histochem. Cytochem. 45: 965–973, 1997). In the present study, we examined the cellular redistribution of Rap1 following treatment of acini with isoproterenol (ISO), the β-adrenergic agonist, and determined the relationship between translocation and amylase release. In the presence of ISO, Rap1 translocated to the cytosol in a concentration- and time-dependent manner; this effect was not mimicked by the muscarinic agonist, carbachol. Translocation was maximal at 1 μM ISO and paralleled amylase release immediately after ISO stimulation. Rap1 translocation and amylase release were blocked by the β-adrenergic antagonist, propranolol, whereas okadaic acid, a downstream secretory inhibitor, significantly blocked amylase release but did not inhibit Rap1 redistribution. Results suggest that the translocation of Rap1 is causally related to secretion and that the role of Rap1 in secretion is at a site proximal to the exocytotic event.


Sign in / Sign up

Export Citation Format

Share Document