Motility and substratum adhesion of Dictyostelium wild-type and cytoskeletal mutant cells: a study by RICM/bright-field double-view image analysis

1995 ◽  
Vol 108 (4) ◽  
pp. 1519-1530 ◽  
Author(s):  
I. Weber ◽  
E. Wallraff ◽  
R. Albrecht ◽  
G. Gerisch

To investigate the dynamics of cell-substratum adhesion during locomotion, a double-view optical technique and computer-assisted image analysis has been developed which combines reflection interference contrast microscopy (RICM) with bright-field imaging. The simultaneous recording of cell-substratum contact and cell body contour has been applied to aggregation-competent cells of Dictyostelium discoideum. These cells are distinguished from cells at earlier stages of development by small areas of contact to a substratum. Three questions have been addressed in analysing the locomotion of aggregation-competent cells. (1) What is the relationship between changes in the shape of cells and their contact to a substratum during a chemotactic response? (2) What is the relationship between protrusion and retraction of the cell body, and between local attachment and detachment? (3) Are there differences between wild-type and mutant cells that lack certain cytoskeletal proteins? During a chemotactic response the front region of the amoeba can bend towards the gradient of attractant without being supported by its contact with a surface, which excludes the necessity for gradients of adhesion for the response. The finding that in locomoting cells protrusion of the leading edge often precedes retraction establishes a pioneer role for the front region. The finding that gain of contact area precedes loss provides evidence for the coordination of interactions between the cell surface and a substratum. For comparison with wild-type, aggregation-competent triple mutant cells have been used that lack two F-actin crosslinking proteins, alpha-actinin and 120 kDa gelation factor, and an actin filament fragmenting protein, severin. Disturbances in the spatial and temporal control of cytoskeletal activities have been unravelled in the mutant by RICM and quantified by cross-correlation analysis of attachment and detachment vectors. In order to detect these disturbances, it was essential to analyse cell locomotion on the weakly adhesive surface of freshly cleaved mica.

Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 533-543
Author(s):  
Johanna L Whitacre ◽  
Dana A Davis ◽  
Kurt A Toenjes ◽  
Sharon M Brower ◽  
Alison E M Adams

Abstract A large collection of yeast actin mutations has been previously isolated and used in numerous studies of actin cytoskeletal function. However, the various mutations have been in congenic, rather than isogenic, backgrounds, making it difficult to compare the subtle phenotypes that are characteristic of these mutants. We have therefore placed 27 mutations in an isogenic background. We used a subset of these mutants to compare the degree to which different actin alleles are defective in sporulation, endocytosis, and growth on NaCl-containing media. We found that the three phenotypes are highly correlated. The correlations are specific and not merely a reflection of general growth defects, because the phenotypes are not correlated with growth rates under normal conditions. Significantly, those actin mutants exhibiting the most severe phenotypes in all three processes have altered residues that cluster to a small region of the actin crystal structure previously defined as the fimbrin (Sac6p)-binding site. We examined the relationship between endocytosis and growth on salt and found that shifting wild-type or actin mutant cells to high salt reduces the rate of α-factor internalization. These results suggest that actin mutants may be unable to grow on salt because of additive endocytic defects (due to mutation and salt).


2011 ◽  
Vol 66 (1-2) ◽  
pp. 47-54 ◽  
Author(s):  
Jian Cheng ◽  
Chun-Xia He ◽  
Zhong-Wei Zhang ◽  
Fei Xu ◽  
Da-Wei Zhang ◽  
...  

Plastid-to-nucleus retrograde signalling coordinates nuclear gene expression with chloroplast function and is essential for the photoautotrophic life-style of plants. The relationship between plastid signalling and water stress response was investigated with genome uncoupled (gun) mutants, gun1, gun3, and gun5, and an abscisic acid (ABA)-responsible transcription factor mutant, abi4. The results showed that gun1, gun3, gun5, and abi4 mutants suffered from more oxidative damages than the wild-type plants under the water stress and the water stress + herbicide (norflurazon, NF) co-treatment. Superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) activities could not be prompted in the plastidsignalling defective mutants under the stress conditions. At the same time, Lhcb expression was not repressed in the plastid-signalling defective mutants by the NF treatment or water stress. Therefore, the photosynthetic apparatus in the mutant cells could not be closed during the stresses and the excessive light caused more photodamages on the mutant leaves. The roles of GUN1, GUN3, GUN5 and ABI4 proteins in environmental stress adaptation have been discussed.


2006 ◽  
Vol 26 (7) ◽  
pp. 2648-2660 ◽  
Author(s):  
Benjamin A. Pinsky ◽  
Chitra V. Kotwaliwale ◽  
Sean Y. Tatsutani ◽  
Christopher A. Breed ◽  
Sue Biggins

ABSTRACT Faithful chromosome segregation depends on the opposing activities of the budding yeast Glc7/PP1 protein phosphatase and Ipl1/Aurora protein kinase. We explored the relationship between Glc7 and Ipl1 and found that the phosphorylation of the Ipl1 substrate, Dam1, was altered by decreased Glc7 activity, whereas Ipl1 levels, localization, and kinase activity were not. These data strongly suggest that Glc7 ensures accurate chromosome segregation by dephosphorylating Ipl1 targets rather than regulating the Ipl1 kinase. To identify potential Glc7 and Ipl1 substrates, we isolated ipl1-321 dosage suppressors. Seven genes (SDS22, BUD14, GIP3, GIP4, SOL1, SOL2, and PEX31) encode newly identified ipl1 dosage suppressors, and all 10 suppressors encode proteins that physically interact with Glc7. The overexpression of the Gip3 and Gip4 suppressors altered Glc7 localization, indicating they are previously unidentified Glc7 regulatory subunits. In addition, the overexpression of Gip3 and Gip4 from the galactose promoter restored Dam1 phosphorylation in ipl1-321 mutant cells and caused wild-type cells to arrest in metaphase with unsegregated chromosomes, suggesting that Gip3 and Gip4 overexpression impairs Glc7's mitotic functions. We therefore propose that the overexpression of Glc7 regulatory subunits can titrate Glc7 away from relevant Ipl1 targets and thereby suppress ipl1-321 cells by restoring the balance of phosphatase/kinase activity.


2011 ◽  
Vol 193 (4) ◽  
pp. 741-753 ◽  
Author(s):  
Telsa M. Mittelmeier ◽  
Joseph S. Boyd ◽  
Mary Rose Lamb ◽  
Carol L. Dieckmann

The eyespot of the unicellular green alga Chlamydomonas reinhardtii is a photoreceptive organelle required for phototaxis. Relative to the anterior flagella, the eyespot is asymmetrically positioned adjacent to the daughter four-membered rootlet (D4), a unique bundle of acetylated microtubules extending from the daughter basal body toward the posterior of the cell. Here, we detail the relationship between the rhodopsin eyespot photoreceptor Channelrhodopsin 1 (ChR1) and acetylated microtubules. In wild-type cells, ChR1 was observed in an equatorial patch adjacent to D4 near the end of the acetylated microtubules and along the D4 rootlet. In cells with cytoskeletal protein mutations, supernumerary ChR1 patches remained adjacent to acetylated microtubules. In mlt1 (multieyed) mutant cells, supernumerary photoreceptor patches were not restricted to the D4 rootlet, and more anterior eyespots correlated with shorter acetylated microtubule rootlets. The data suggest a model in which photoreceptor localization is dependent on microtubule-based trafficking selective for the D4 rootlet, which is perturbed in mlt1 mutant cells.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Godai Suzuki ◽  
Yutaka Saito ◽  
Motoaki Seki ◽  
Daniel Evans-Yamamoto ◽  
Mikiko Negishi ◽  
...  

AbstractMorphological profiling is a combination of established optical microscopes and cutting-edge machine vision technologies, which stacks up successful applications in high-throughput phenotyping. One major question is how much information can be extracted from an image to identify genetic differences between cells. While fluorescent microscopy images of specific organelles have been broadly used for single-cell profiling, the potential ability of bright-field (BF) microscopy images of label-free cells remains to be tested. Here, we examine whether single-gene perturbation can be discriminated based on BF images of label-free cells using a machine learning approach. We acquired hundreds of BF images of single-gene mutant cells, quantified single-cell profiles consisting of texture features of cellular regions, and constructed a machine learning model to discriminate mutant cells from wild-type cells. Interestingly, the mutants were successfully discriminated from the wild type (area under the receiver operating characteristic curve = 0.773). The features that contributed to the discrimination were identified, and they included those related to the morphology of structures that appeared within cellular regions. Furthermore, functionally close gene pairs showed similar feature profiles of the mutant cells. Our study reveals that single-gene mutant cells can be discriminated from wild-type cells based on BF images, suggesting the potential as a useful tool for mutant cell profiling.


Author(s):  
Karen S. Howard ◽  
H. D. Braymer ◽  
M. D. Socolofsky ◽  
S. A. Milligan

The recently isolated cell wall mutant slime X of Neurospora crassa was prepared for ultrastructural and morphological comparison with the cell wall mutant slime. The purpose of this article is to discuss the methods of preparation for TEM and SEM observations, as well as to make a preliminary comparison of the two mutants.TEM: Cells of the slime mutant were prepared for thin sectioning by the method of Bigger, et al. Slime X cells were prepared in the same manner with the following two exceptions: the cells were embedded in 3% agar prior to fixation and the buffered solutions contained 5% sucrose throughout the procedure.SEM: Two methods were used to prepare mutant and wild type Neurospora for the SEM. First, single colonies of mutant cells and small areas of wild type hyphae were cut from solid media and fixed with OSO4 vapors similar to the procedure used by Harris, et al. with one alteration. The cell-containing agar blocks were dehydrated by immersion in 2,2-dimethoxypropane (DMP).


Author(s):  
William Hill ◽  
Andreas Zaragkoulias ◽  
Beatriz Salvador-Barbero ◽  
Geraint J. Parfitt ◽  
Markella Alatsatianos ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keiko Sato ◽  
Masami Naya ◽  
Yuri Hatano ◽  
Yoshio Kondo ◽  
Mari Sato ◽  
...  

AbstractColony spreading of Flavobacterium johnsoniae is shown to include gliding motility using the cell surface adhesin SprB, and is drastically affected by agar and glucose concentrations. Wild-type (WT) and ΔsprB mutant cells formed nonspreading colonies on soft agar, but spreading dendritic colonies on soft agar containing glucose. In the presence of glucose, an initial cell growth-dependent phase was followed by a secondary SprB-independent, gliding motility-dependent phase. The branching pattern of a ΔsprB colony was less complex than the pattern formed by the WT. Mesoscopic and microstructural information was obtained by atmospheric scanning electron microscopy (ASEM) and transmission EM, respectively. In the growth-dependent phase of WT colonies, dendritic tips spread rapidly by the movement of individual cells. In the following SprB-independent phase, leading tips were extended outwards by the movement of dynamic windmill-like rolling centers, and the lipoproteins were expressed more abundantly. Dark spots in WT cells during the growth-dependent spreading phase were not observed in the SprB-independent phase. Various mutations showed that the lipoproteins and the motility machinery were necessary for SprB-independent spreading. Overall, SprB-independent colony spreading is influenced by the lipoproteins, some of which are involved in the gliding machinery, and medium conditions, which together determine the nutrient-seeking behavior.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tara Al Zubaidi ◽  
O. H. Fiete Gehrisch ◽  
Marie-Michelle Genois ◽  
Qi Liu ◽  
Shan Lu ◽  
...  

AbstractMutant KRAS is a common tumor driver and frequently confers resistance to anti-cancer treatments such as radiation. DNA replication stress in these tumors may constitute a therapeutic liability but is poorly understood. Here, using single-molecule DNA fiber analysis, we first characterized baseline replication stress in a panel of unperturbed isogenic and non-isogenic cancer cell lines. Correlating with the observed enhanced replication stress we found increased levels of cytosolic double-stranded DNA in KRAS mutant compared to wild-type cells. Yet, despite this phenotype replication stress-inducing agents failed to selectively impact KRAS mutant cells, which were protected by CHK1. Similarly, most exogenous stressors studied did not differentially augment cytosolic DNA accumulation in KRAS mutant compared to wild-type cells. However, we found that proton radiation was able to slow fork progression and preferentially induce fork stalling in KRAS mutant cells. Proton treatment also partly reversed the radioresistance associated with mutant KRAS. The cellular effects of protons in the presence of KRAS mutation clearly contrasted that of other drugs affecting replication, highlighting the unique nature of the underlying DNA damage caused by protons. Taken together, our findings provide insight into the replication stress response associated with mutated KRAS, which may ultimately yield novel therapeutic opportunities.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 45-56
Author(s):  
Luther Davis ◽  
JoAnne Engebrecht

Abstract The DOM34 gene of Saccharomyces cerevisiae is similar togenes found in diverse eukaryotes and archaebacteria. Analysis of dom34 strains shows that progression through the G1 phase of the cell cycle is delayed, mutant cells enter meiosis aberrantly, and their ability to form pseudohyphae is significantly diminished. RPS30A, which encodes ribosomal protein S30, was identified in a screen for high-copy suppressors of the dom34Δ growth defect. dom34Δ mutants display an altered polyribosome profile that is rescued by expression of RPS30A. Taken together, these data indicate that Dom34p functions in protein translation to promote G1 progression and differentiation. A Drosophila homolog of Dom34p, pelota, is required for the proper coordination of meiosis and spermatogenesis. Heterologous expression of pelota in dom34Δ mutants restores wild-type growth and differentiation, suggesting conservation of function between the eukaryotic members of the gene family.


Sign in / Sign up

Export Citation Format

Share Document