The SAC3 gene encodes a nuclear protein required for normal progression of mitosis

1996 ◽  
Vol 109 (6) ◽  
pp. 1575-1583
Author(s):  
A. Bauer ◽  
R. Kolling

The SAC3 gene of Saccharomyces serevisiae has been implicated in actin function by genetic experiments showing that a temperature sensitive mutation in the essential actin gene (actl-1) can be suppressed by mutations in SAC3. An involvement of SAC3 in actin function is further suggested by the observation that the actin cytoskeleton is altered in SAC3 mutants. Our fractionation experiments, however, point to a nuclear localization of Sac3p. On sucrose density gradients Sac3p co-fractionated with the nuclear organelle markers examined. Furthermore, Sac3p was enriched 10-fold in a nuclei preparation along with the nuclear protein Nop1p. In this report we further show that SAC3 function is required for normal progression of mitosis. SAC3 mutants showed a higher fraction of large-budded cells in culture, indicative of a cell cycle delay. The predominant population among the large-budded sac3 cells were cells with a single nucleus at the bud-neck and a short intranuclear spindle. This suggests that a cell cycle delay occurs in mitosis prior to anaphase. The observation that SAC3 mutants lose chromosomes with higher frequency than wild-type is another indication for a mitotic defect in SAC3 mutants. We further noticed that SAC3 mutants are more resistant against the microtubule destabilizing drug benomyl. This finding suggests that SAC3 is involved, directly or indirectly, in microtubule function. In summary, our data indicate that SAC3 is involved in a process which affects both the actin cytoskeleton and mitosis.

Genetics ◽  
2000 ◽  
Vol 154 (4) ◽  
pp. 1561-1576
Author(s):  
Neil Macpherson ◽  
Vivien Measday ◽  
Lynda Moore ◽  
Brenda Andrews

Abstract In Saccharomyces cerevisiae, the Swi6 protein is a component of two transcription factors, SBF and MBF, that promote expression of a large group of genes in the late G1 phase of the cell cycle. Although SBF is required for cell viability, SWI6 is not an essential gene. We performed a synthetic lethal screen to identify genes required for viability in the absence of SWI6 and identified 10 complementation groups of swi6-dependent lethal mutants, designated SLM1 through SLM10. We were most interested in mutants showing a cell cycle arrest phenotype; both slm7-1 swi6Δ and slm8-1 swi6Δ double mutants accumulated as large, unbudded cells with increased 1N DNA content and showed a temperature-sensitive growth arrest in the presence of Swi6. Analysis of the transcript levels of cell cycle-regulated genes in slm7-1 SWI6 mutant strains at the permissive temperature revealed defects in regulation of a subset of cyclin-encoding genes. Complementation and allelism tests showed that SLM7 is allelic with the TAF17 gene, which encodes a histone-like component of the general transcription factor TFIID and the SAGA histone acetyltransferase complex. Sequencing showed that the slm7-1 allele of TAF17 is predicted to encode a version of Taf17 that is truncated within a highly conserved region. The cell cycle and transcriptional defects caused by taf17slm7-1 are consistent with the role of TAFIIs as modulators of transcriptional activation and may reflect a role for TAF17 in regulating activation by SBF and MBF.


Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 63-80 ◽  
Author(s):  
T A Weinert ◽  
L H Hartwell

Abstract In eucaryotes a cell cycle control called a checkpoint ensures that mitosis occurs only after chromosomes are completely replicated and any damage is repaired. The function of this checkpoint in budding yeast requires the RAD9 gene. Here we examine the role of the RAD9 gene in the arrest of the 12 cell division cycle (cdc) mutants, temperature-sensitive lethal mutants that arrest in specific phases of the cell cycle at a restrictive temperature. We found that in four cdc mutants the cdc rad9 cells failed to arrest after a shift to the restrictive temperature, rather they continued cell division and died rapidly, whereas the cdc RAD cells arrested and remained viable. The cell cycle and genetic phenotypes of the 12 cdc RAD mutants indicate the function of the RAD9 checkpoint is phase-specific and signal-specific. First, the four cdc RAD mutants that required RAD9 each arrested in the late S/G2 phase after a shift to the restrictive temperature when DNA replication was complete or nearly complete, and second, each leaves DNA lesions when the CDC gene product is limiting for cell division. Three of the four CDC genes are known to encode DNA replication enzymes. We found that the RAD17 gene is also essential for the function of the RAD9 checkpoint because it is required for phase-specific arrest of the same four cdc mutants. We also show that both X- or UV-irradiated cells require the RAD9 and RAD17 genes for delay in the G2 phase. Together, these results indicate that the RAD9 checkpoint is apparently activated only by DNA lesions and arrests cell division only in the late S/G2 phase.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 1050-1050 ◽  
Author(s):  
Paolo Nuciforo ◽  
Dominik Hlauschek ◽  
Cristina Saura ◽  
Evandro de Azambuja ◽  
Roberta Fasani ◽  
...  

1050 Background: Taselisib (T) is an oral, potent, selective inhibitor of Class I PI3-kinase with enhanced activity against PIK3CA mutant cancer cells. Results from the LORELEI trial have demonstrated a significant improvement in ORR (objective response rate) by centrally assessed magnetic resonance imaging in all randomized patients as well as in the PIK3CA mutant (MT) cohort treated with neoadjuvant T plus letrozole (L) compared to placebo (P) plus L. Here we present the results of exploratory analyses of selected pathway-related phosphoproteins. Methods: Baseline (BL) and week3 (W3) tumor biopsies were obtained from 334 patients enrolled in the trial. Phosphoproteins (pAKT, pPRAS40 and pS6) were analyzed by IHC. BL levels as well as changes from BL to W3 were correlated with response assessed either by ORR or cell cycle arrest (Ki67 at W3 < 2.7%). Results: In the overall population, BL phosphoproteins levels were similar between the T and P arms. Higher pAKT (p < 0.001) and pPRAS40 (p = 0.004) levels were observed in MT vs wild-type (WT), whereas the opposite result was found for pS6 (p = 0.03). Treatment-induced absolute changes of phosphoproteins adjusted for BL levels were not significantly different between the T and P arms in the overall population, except for pPRAS40 with higher decrease in the T arm (p = 0.014). After stratification for PIK3CA genotype, a significantly greater decrease in expression levels was observed for pPRAS40 (p < 0.001) and pS6 (p = 0.020) in MT tumors treated with T. The treatment effects were not significantly different in the WT population. A trend for an association between decrease in pS6 levels at W3 and improved ORR was observed in the MT (p = 0.08) and T (p = 0.09) subgroups. The magnitude of pS6 suppression at W3 was higher in tumors achieving a cell cycle arrest in the MT/T subgroup (biserial correlation = -0.473). Conclusions: Exploratory analyses of phosphoproteins showed bioactivity of taselisib as indicated by downstream pathway suppression. Translational research aiming to integrate these results with additional exploratory biomarkers data is currently ongoing. Clinical trial information: NCT02273973.


2000 ◽  
Vol 20 (15) ◽  
pp. 5554-5570 ◽  
Author(s):  
Christine Wasylyk ◽  
Bohdan Wasylyk

ABSTRACT The cell cycle arrest and proapoptotic functions of p53 are under tight control by Mdm2. After stress activation of p53 by nontranscriptional mechanisms, transcription of the mdm2gene results in increased synthesis of Mdm2 and down-regulation of p53. Disruption of this autoregulatory loop has profound effects on cell survival and tumorigenesis. We show that a defective p53-Mdm2 autoregulatory loop results from inactivation of a basal transcription factor, TAFII250, in tsBN462 cells. We found that Mdm2 expression rescues the temperature-sensitive phenotype of tsBN462 cells, as shown by activation of cell cycle-regulated gene promoters (B-myb, cyclin A, and cdc25C), increased cell growth and DNA synthesis, and inhibition of apoptosis. These effects of Mdm2 are mediated by p53. Exogenous Mdm2 expression apparently complements endogenous Mdm2 synthesis in tsBN462 cells, which is reduced compared to that in the equivalent parental cells with wild-type TAFII250, BHK21. Expression of wild-type TAFII250 in tsBN462 stimulates and prolongs the synthesis of Mdm2 and rescues the temperature-sensitive phenotype. The TAFII250 rescue is blocked by inhibition of Mdm2-p53 interactions. We also show that Mdm2 promoter activation, after transfer to the nonpermissive temperature, is attenuated in cells with mutant TAFII250. The temperature-sensitive phenotype apparently results from inefficient inhibition of heat-induced p53 by reduced Mdm2 synthesis due to low mdm2 promoter activity. These results raise the possibility that the p53-Mdm2 autoregulatory loop could guard against transcriptional defects in cells.


2004 ◽  
Vol 297 (1) ◽  
pp. 285-293 ◽  
Author(s):  
Noriko Yasuhara ◽  
Eri Takeda ◽  
Hitomi Inoue ◽  
Ippei Kotera ◽  
Yoshihiro Yoneda

1980 ◽  
Vol 103 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Mara Rossini ◽  
Susan Baserga ◽  
C. H. Huang ◽  
C. James Ingles ◽  
Renato Baserga

1989 ◽  
Vol 141 (1) ◽  
pp. 90-96 ◽  
Author(s):  
Hansjuerg Alder ◽  
Chung-Der Chang ◽  
Sing-Tsung Chen ◽  
Ingrid Beck ◽  
Chen-Yeh Chang ◽  
...  

1995 ◽  
Vol 129 (6) ◽  
pp. 1575-1588 ◽  
Author(s):  
V Mermall ◽  
K G Miller

The 95F myosin, a class VI unconventional myosin, associates with particles in the cytoplasm of the Drosophila syncytial blastoderm and is required for the ATP- and F-actin-dependent translocation of these particles. The particles undergo a cell cycle-dependent redistribution from domains that surround each nucleus in interphase to transient membrane invaginations that provide a barrier between adjacent spindles during mitosis. When 95F myosin function is inhibited by antibody injection, profound defects in syncytial blastoderm organization occur. This disorganization is seen as aberrant nuclear morphology and position and is suggestive of failures in cytoskeletal function. Nuclear defects correlate with gross defects in the actin cytoskeleton, including indistinct actin caps and furrows, missing actin structures, abnormal spacing of caps, and abnormally spaced furrows. Three-dimensional examination of embryos injected with anti-95F myosin antibody reveals that actin furrows do not invaginate as deeply into the embryo as do normal furrows. These furrows do not separate adjacent mitoses, since microtubules cross over them. These inappropriate microtubule interactions lead to aberrant nuclear divisions and to the nuclear defects observed. We propose that 95F myosin function is required to generate normal actin-based transient membrane furrows. The motor activity of 95F myosin itself and/or components within the particles transported to the furrows by 95F myosin may be required for normal furrows to form.


2017 ◽  
Vol 7 (7) ◽  
pp. 2081-2094 ◽  
Author(s):  
Frederick R Cross ◽  
Michal Breker ◽  
Kristi Lieberman

Abstract In many contexts, the problem arises of determining which of many candidate mutations is the most likely to be causative for some phenotype. It is desirable to have a way to evaluate this probability that relies as little as possible on previous knowledge, to avoid bias against discovering new genes or functions. We have isolated mutants with blocked cell cycle progression in Chlamydomonas and determined mutant genome sequences. Due to the intensity of UV mutagenesis required for efficient mutant collection, the mutants contain multiple mutations altering coding sequence. To provide a quantitative estimate of probability that each individual mutation in a given mutant is the causative one, we developed a Bayesian approach. The approach employs four independent indicators: sequence conservation of the mutated coding sequence with Arabidopsis; severity of the mutation relative to Chlamydomonas wild-type based on Blosum62 scores; meiotic mapping information for location of the causative mutation relative to known molecular markers; and, for a subset of mutants, the transcriptional profile of the candidate wild-type genes through the mitotic cell cycle. These indicators are statistically independent, and so can be combined quantitatively into a single probability calculation. We validate this calculation: recently isolated mutations that were not in the training set for developing the indicators, with high calculated probability of causality, are confirmed in every case by additional genetic data to indeed be causative. Analysis of “best reciprocal BLAST” (BRB) relationships among Chlamydomonas and other eukaryotes indicate that the temperature sensitive-lethal (Ts-lethal) mutants that our procedure recovers are highly enriched for fundamental cell-essential functions conserved broadly across plants and other eukaryotes, accounting for the high information content of sequence alignment to Arabidopsis.


1996 ◽  
Vol 16 (8) ◽  
pp. 4445-4455 ◽  
Author(s):  
K M Latham ◽  
S W Eastman ◽  
A Wong ◽  
P W Hinds

Rat fibroblasts transformed by a temperature-sensitive mutant of murine p53 undergo a reversible growth arrest in G1 at 32.5 degrees C, the temperature at which p53 adopts a wild-type conformation. The arrested cells contain inactive cyclin-dependent kinase 2 (cdk2) despite the presence of high levels of cyclin E and cdk-activating kinase activity. This is due in part to p53-dependent expression of the p2l cdk inhibitor. Upon shift to 39 degrees C, wild-type p53 is lost and cdk2 activation and pRb phosphorylation occur concomitantly with loss of p2l. This p53-mediated growth arrest can be abrogated by overexpression of cdk4 and cdk6 but not cdk2 or cyclins, leading to continuous proliferation of transfected cells in the presence of wild-type p53 and p2l. Kinase-inactive counterparts of cdk4 and cdk6 also rescue these cells from growth arrest, implicating a noncatalytic role for cdk4 and cdk6 in this resistance to p53-mediated growth arrest. Aberrant expression of these cell cycle kinases may thus result in an oncogenic interference with inhibitors of cell cycle progression.


Sign in / Sign up

Export Citation Format

Share Document