scholarly journals Validated Bayesian Differentiation of Causative and Passenger Mutations

2017 ◽  
Vol 7 (7) ◽  
pp. 2081-2094 ◽  
Author(s):  
Frederick R Cross ◽  
Michal Breker ◽  
Kristi Lieberman

Abstract In many contexts, the problem arises of determining which of many candidate mutations is the most likely to be causative for some phenotype. It is desirable to have a way to evaluate this probability that relies as little as possible on previous knowledge, to avoid bias against discovering new genes or functions. We have isolated mutants with blocked cell cycle progression in Chlamydomonas and determined mutant genome sequences. Due to the intensity of UV mutagenesis required for efficient mutant collection, the mutants contain multiple mutations altering coding sequence. To provide a quantitative estimate of probability that each individual mutation in a given mutant is the causative one, we developed a Bayesian approach. The approach employs four independent indicators: sequence conservation of the mutated coding sequence with Arabidopsis; severity of the mutation relative to Chlamydomonas wild-type based on Blosum62 scores; meiotic mapping information for location of the causative mutation relative to known molecular markers; and, for a subset of mutants, the transcriptional profile of the candidate wild-type genes through the mitotic cell cycle. These indicators are statistically independent, and so can be combined quantitatively into a single probability calculation. We validate this calculation: recently isolated mutations that were not in the training set for developing the indicators, with high calculated probability of causality, are confirmed in every case by additional genetic data to indeed be causative. Analysis of “best reciprocal BLAST” (BRB) relationships among Chlamydomonas and other eukaryotes indicate that the temperature sensitive-lethal (Ts-lethal) mutants that our procedure recovers are highly enriched for fundamental cell-essential functions conserved broadly across plants and other eukaryotes, accounting for the high information content of sequence alignment to Arabidopsis.

2017 ◽  
Author(s):  
Frederick R. Cross ◽  
Michal Breker ◽  
Kristi Lieberman

AbstractIn many contexts, the problem arises of determining which of many candidate mutations is the most likely to be causative for some phenotype. It is desirable to have a way to evaluate this probability that relies as little as possible on previous knowledge, to avoid bias against discovering new genes or functions. We are isolating mutants with blocked cell cycle progression in Chlamydomonas, and determining mutant genome sequences. Due to the intensity of UV mutagenesis required for efficient mutant collection, the mutants contain multiple mutations altering coding sequence. To provide a quantitative estimate of probability that each individual mutation in a given mutant is the causative one, we develop a Bayesian approach. The approach employs four independent indicators: sequence conservation of the mutated coding sequence with Arabidopsis; severity of the mutation relative to Chlamydomonas wild type based on Blosum62 scores; meiotic mapping information for location of the causative mutation relative to known molecular markers; and, for a subset of mutants, transcriptional profile of the candidate wild type genes through the mitotic cell cycle.These indicators are statistically independent, and so can be combined quantitatively into a single probability calculation. We validate this calculation: recently isolated mutations that were not in the training set for developing the indicators, with high calculated probability of causality, are confirmed in every case by additional genetic data to indeed be causative. Analysis of best reciprocal blast relationships among Chlamydomonas and other eukaryotes indicate that the Ts-lethal mutants that our procedure recovers are highly enriched for fundamental cell-essential functions conserved broadly across plants and other eukaryotes, accounting for the high information content of sequence alignment to Arabidopsis.


1996 ◽  
Vol 16 (8) ◽  
pp. 4445-4455 ◽  
Author(s):  
K M Latham ◽  
S W Eastman ◽  
A Wong ◽  
P W Hinds

Rat fibroblasts transformed by a temperature-sensitive mutant of murine p53 undergo a reversible growth arrest in G1 at 32.5 degrees C, the temperature at which p53 adopts a wild-type conformation. The arrested cells contain inactive cyclin-dependent kinase 2 (cdk2) despite the presence of high levels of cyclin E and cdk-activating kinase activity. This is due in part to p53-dependent expression of the p2l cdk inhibitor. Upon shift to 39 degrees C, wild-type p53 is lost and cdk2 activation and pRb phosphorylation occur concomitantly with loss of p2l. This p53-mediated growth arrest can be abrogated by overexpression of cdk4 and cdk6 but not cdk2 or cyclins, leading to continuous proliferation of transfected cells in the presence of wild-type p53 and p2l. Kinase-inactive counterparts of cdk4 and cdk6 also rescue these cells from growth arrest, implicating a noncatalytic role for cdk4 and cdk6 in this resistance to p53-mediated growth arrest. Aberrant expression of these cell cycle kinases may thus result in an oncogenic interference with inhibitors of cell cycle progression.


2010 ◽  
Vol 9 (10) ◽  
pp. 1418-1431 ◽  
Author(s):  
Emma L. Turner ◽  
Mackenzie E. Malo ◽  
Marnie G. Pisclevich ◽  
Megan D. Dash ◽  
Gerald F. Davies ◽  
...  

ABSTRACT The anaphase-promoting complex (APC), a large evolutionarily conserved ubiquitin ligase complex, regulates cell cycle progression through mitosis and G1. Here, we present data suggesting that APC-dependent cell cycle progression relies on a specific set of posttranslational histone-modifying enzymes. Multiple APC subunit mutants were impaired in total and modified histone H3 protein content. Acetylated H3K56 (H3K56Ac) levels were as reduced as those of total H3, indicating that loading histones with H3K56Ac is unaffected in APC mutants. However, under restrictive conditions, H3K9Ac and dimethylated H3K79 (H3K79me2) levels were more greatly reduced than those of total H3. In a screen for histone acetyltransferase (HAT) and histone deacetylase (HDAC) mutants that genetically interact with the apc5 CA (chromatin assembly) mutant, we found that deletion of GCN5 or ELP3 severely hampered apc5 CA temperature-sensitive (ts) growth. Further analyses showed that (i) the elp3Δ gcn5Δ double mutant ts defect was epistatic to that observed in apc5 CA cells; (ii) gcn5Δ and elp3Δ mutants accumulate in mitosis; and (iii) turnover of the APC substrate Clb2 is not impaired in elp3Δ gcn5Δ cells. Increased expression of ELP3 and GCN5, as well as genes encoding the HAT Rtt109 and the chromatin assembly factors Msi1 and Asf1, suppressed apc5 CA defects, while increased APC5 expression partially suppressed elp3Δ gcn5Δ growth defects. Finally, we demonstrate that Gcn5 is unstable during G1 and following G1 arrest and is stabilized in APC mutants. We present our working model in which Elp3/Gcn5 and the APC work together to facilitate passage through mitosis and G1. To progress into S, we propose that at least Gcn5 must then be targeted for degradation in an APC-dependent fashion.


2007 ◽  
Vol 6 (10) ◽  
pp. 1814-1823 ◽  
Author(s):  
Alicia G. Howe ◽  
Gregory D. Fairn ◽  
Kendra MacDonald ◽  
Vytas A. Bankaitis ◽  
Christopher R. McMaster

ABSTRACT Sec14p is an essential phosphatidylcholine/phosphatidylinositol transfer protein with a well-described role in the regulation of Golgi apparatus-derived vesicular transport in yeast. Inactivation of the CDP-choline pathway for phosphatidylcholine synthesis allows cells to survive in the absence of Sec14p function through restoration of Golgi vesicular transport capability. In this study, Saccharomyces cerevisiae cells containing a SEC14 temperature-sensitive allele along with an inactivated CDP-choline pathway were transformed with a high-copy-number yeast genomic library. Genes whose increased expression inhibited cell growth in the absence of Sec14p function were identified. Increasing levels of the Rho GTPase Cdc42p and its direct effector kinases Cla4p and Ste20p prevented the growth of cells lacking Sec14p and CDP-choline pathway function. Growth suppression was accompanied by an increase in large and multiply budded cells. This effect on polarized cell growth did not appear to be due to an inability to establish cell polarity, since both the actin cytoskeleton and localization of the septin Cdc12p were unaffected by increased expression of Cdc42p, Cla4p, or Ste20p. Nuclei were present in both the mother cell and the emerging bud, consistent with Sec14p regulation of the cell cycle subsequent to anaphase but prior to cytokinesis/septum breakdown. Increased expression of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate 5-kinase prevented growth arrest by CDC42, CLA4, or STE20 upon inactivation of Sec14p function. Sec14p regulation of phosphoinositide levels affects cytokinesis at the level of the Cdc42p/Cla4p/Ste20p signaling cascade.


2019 ◽  
Vol 12 (579) ◽  
pp. eaav1439 ◽  
Author(s):  
Olha M. Koval ◽  
Emily K. Nguyen ◽  
Velarchana Santhana ◽  
Trevor P. Fidler ◽  
Sara C. Sebag ◽  
...  

The role of the mitochondrial Ca2+uniporter (MCU) in physiologic cell proliferation remains to be defined. Here, we demonstrated that the MCU was required to match mitochondrial function to metabolic demands during the cell cycle. During the G1-S transition (the cycle phase with the highest mitochondrial ATP output), mitochondrial fusion, oxygen consumption, and Ca2+uptake increased in wild-type cells but not in cells lacking MCU. In proliferating wild-type control cells, the addition of the growth factors promoted the activation of the Ca2+/calmodulin-dependent kinase II (CaMKII) and the phosphorylation of the mitochondrial fission factor Drp1 at Ser616. The lack of the MCU was associated with baseline activation of CaMKII, mitochondrial fragmentation due to increased Drp1 phosphorylation, and impaired mitochondrial respiration and glycolysis. The mitochondrial fission/fusion ratio and proliferation in MCU-deficient cells recovered after MCU restoration or inhibition of mitochondrial fragmentation or of CaMKII in the cytosol. Our data highlight a key function for the MCU in mitochondrial adaptation to the metabolic demands during cell cycle progression. Cytosolic CaMKII and the MCU participate in a regulatory circuit, whereby mitochondrial Ca2+uptake affects cell proliferation through Drp1.


2010 ◽  
Vol 5 (2) ◽  
pp. 180-186 ◽  
Author(s):  
Hua Su ◽  
Ling Su ◽  
Qiuxia He ◽  
Jing Zhao ◽  
Baoxiang Zhao ◽  
...  

1996 ◽  
Vol 109 (6) ◽  
pp. 1575-1583
Author(s):  
A. Bauer ◽  
R. Kolling

The SAC3 gene of Saccharomyces serevisiae has been implicated in actin function by genetic experiments showing that a temperature sensitive mutation in the essential actin gene (actl-1) can be suppressed by mutations in SAC3. An involvement of SAC3 in actin function is further suggested by the observation that the actin cytoskeleton is altered in SAC3 mutants. Our fractionation experiments, however, point to a nuclear localization of Sac3p. On sucrose density gradients Sac3p co-fractionated with the nuclear organelle markers examined. Furthermore, Sac3p was enriched 10-fold in a nuclei preparation along with the nuclear protein Nop1p. In this report we further show that SAC3 function is required for normal progression of mitosis. SAC3 mutants showed a higher fraction of large-budded cells in culture, indicative of a cell cycle delay. The predominant population among the large-budded sac3 cells were cells with a single nucleus at the bud-neck and a short intranuclear spindle. This suggests that a cell cycle delay occurs in mitosis prior to anaphase. The observation that SAC3 mutants lose chromosomes with higher frequency than wild-type is another indication for a mitotic defect in SAC3 mutants. We further noticed that SAC3 mutants are more resistant against the microtubule destabilizing drug benomyl. This finding suggests that SAC3 is involved, directly or indirectly, in microtubule function. In summary, our data indicate that SAC3 is involved in a process which affects both the actin cytoskeleton and mitosis.


2001 ◽  
Vol 114 (2) ◽  
pp. 257-267 ◽  
Author(s):  
A. Abrieu ◽  
M. Doree ◽  
D. Fisher

Throughout oocyte maturation, and subsequently during the first mitotic cell cycle, the MAP kinase cascade and cyclin-B-Cdc2 kinase are associated with the control of cell cycle progression. Many roles have been directly or indirectly attributed to MAP kinase and its influence on cyclin-B-Cdc2 kinase in different model systems; yet a principle theme does not emerge from the published literature, some of which is apparently contradictory. Interplay between these two kinases affects the major events of meiotic maturation throughout the animal kingdom, including the suppression of DNA replication, the segregation of meiotic chromosomes, and the prevention of parthenogenetic activation. Central to many of these events appears to be the control by MAP kinase of cyclin translation and degradation.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Larissa Kido ◽  
Eun-Ryeong Hahm ◽  
Valeria Cagnon ◽  
Mário Maróstica ◽  
Shivendra Singh

Abstract Objectives Piceatannol (PIC) is a polyphenolic and resveratrol analog that is found in many vegetables consumed by humans. Like resveratrol, PIC has beneficial effects on health due to its anti-inflammatory, anti-oxidative and anti-proliferative features. However, the molecular targets of PIC in prostate cancer (PCa), which is the second most common cancer in men worldwide, are still poorly understood. Preventing cancer through dietary sources is a promising strategy to control diseases. Therefore, the aim of present study was to investigate the molecular mechanistic of actions of PIC in PCa cell lines with different genetic background common to human prostate cancer. Methods Human PCa cell lines (PC-3, 22Rv1, LNCaP, and VCaP) were treated with different doses of PIC (5–40 µM) and used for cell viability assay, measurement of total free fatty acids (FFA) and lactate, and cell cycle distribution. Results PIC treatment dose- and time-dependently reduced viability in PC-3 (androgen-independent, PTEN null, p53 null) and VCaP cells (androgen-responsive, wild-type PTEN, mutant p53). Because metabolic alterations, such as increased glucose and lipid metabolism are implicated in pathogenesis of in PCa, we tested if PIC could affect these pathways. Results from lactate and total free fatty acid assays in VCaP, 22Rv1 (castration-resistant, wild-type PTEN, mutant p53), and LNCaP (androgen-responsive, PTEN null, wild-type p53) revealed no effect of PIC on these metabolisms. However, PIC treatment delayed cell cycle progression in G0/G1 phase concomitant with the induction of apoptosis in both LNCaP and 22Rv1 cells, suggesting that growth inhibitory effect of PIC in PCa is associated with cell cycle arrest and apoptotic cell death at least LNCaP and 22Rv1 cells. Conclusions While PIC treatment does not alter lipid or glucose metabolism, cell cycle arrest and apoptosis induction are likely important in anti-cancer effects of PIC. Funding Sources São Paulo Research Foundation (2018/09793-7).


Sign in / Sign up

Export Citation Format

Share Document