Expression and characterization of splice variants of PYK2, a focal adhesion kinase-related protein

1998 ◽  
Vol 111 (14) ◽  
pp. 1981-1991 ◽  
Author(s):  
W.C. Xiong ◽  
M. Macklem ◽  
J.T. Parsons

Focal adhesion kinase and the recently identified proline-rich tyrosine kinase 2 (PYK2), also known as cell adhesion kinase β, related adhesion focal tyrosine kinase or calcium-dependent protein tyrosine kinase, define a new family of non-receptor protein tyrosine kinases. Activation of PYK2 has been implicated in multiple signaling events, including modulation of ion channels, T- and B-cell receptor signaling and cell death. Mechanisms underlying the functional diversity of PYK2 are unclear. Here, we provide evidence for two novel alternatively expressed isoforms of PYK2. One isoform, designated PYK2s (PYK2 splice form), appears to be a splice variant of PYK2 lacking 42 amino acids within the C-terminal domain. A second isoform, referred to as PRNK (PYK2-related non-kinase), appears to be specified by mRNAs that encode only part of the C-terminal domain of PYK2. Northern blot analysis indicates that the unspliced PYK2 is expressed at high levels in the brain and poorly expressed in the spleen, whereas PYK2s and PRNK are expressed in the spleen. In situ hybridization studies of rat brain demonstrate that the unspliced PYK2 is selectively expressed at high levels in hippocampus, cerebral cortex and olfactory bulb, whereas PYK2s and PRNK are expressed at low levels in all regions of rat brain examined. Immunofluorescence analysis of ectopically expressed PRNK protein shows that PRNK, in contrast to full-length PYK2, is localized to focal adhesions by sequences within the focal adhesion targeting domain. In addition, PYK2, but not PRNK, interacts with p130(cas)and Graf. These results imply that PRNK may selectively regulate PYK2 function in certain cells by binding to some but not all PYK2 binding partners, and the functional diversity mediated by PYK2 may be due in part to complex alternative splicing.

2010 ◽  
Vol 239 (10) ◽  
pp. 2735-2741 ◽  
Author(s):  
Annemiek Beverdam ◽  
Terje Svingen ◽  
Stefan Bagheri-Fam ◽  
Peter McClive ◽  
Andrew H. Sinclair ◽  
...  

1993 ◽  
Vol 13 (2) ◽  
pp. 785-791
Author(s):  
M D Schaller ◽  
C A Borgman ◽  
J T Parsons

Integrins play a central role in cellular adhesion and anchorage of the cytoskeleton and participate in the generation of intracellular signals, including tyrosine phosphorylation. We have recently isolated a cDNA encoding a unique, focal adhesion-associated protein tyrosine kinase (FAK) that is a component of an integrin-mediated signal transduction pathway. Here we report the isolation of cDNAs encoding the C-terminal, noncatalytic domain of the FAK kinase, termed FRNK (FAK-related nonkinase). Both the FAK- and FRNK-encoded polypeptides, pp125FAK and p41/p43FRNK, are expressed in normal chicken embryo cells. pp125FAK and p41/p43FRNK were localized to focal adhesions, suggesting that pp125FAK is directed to the focal adhesions by sequences within its C-terminal domain. We also show that the fibronectin-dependent increase in tyrosine phosphorylation of pp125FAK is accompanied by a concomitant posttranslational modification of p41FRNK.


2009 ◽  
Vol 296 (3) ◽  
pp. H627-H638 ◽  
Author(s):  
Ana Maria Manso ◽  
Seok-Min Kang ◽  
Sergey V. Plotnikov ◽  
Ingo Thievessen ◽  
Jaewon Oh ◽  
...  

Migration and proliferation of cardiac fibroblasts (CFs) play an important role in the myocardial remodeling process. While many factors have been identified that regulate CF growth and migration, less is known about the signaling mechanisms involved in these processes. Here, we utilized Cre-LoxP technology to obtain focal adhesion kinase (FAK)-deficient adult mouse CFs and studied how FAK functioned in modulating cell adhesion, proliferation, and migration of these cells. Treatment of FAKflox/flox CFs with Ad/Cre virus caused over 70% reduction of FAK protein levels within a cell population. FAK-deficient CFs showed no changes in focal adhesions, cell morphology, or protein expression levels of vinculin, talin, or paxillin; proline-rich tyrosine kinase 2 (Pyk2) expression and activity were increased. Knockdown of FAK protein in CFs increased PDGF-BB-induced proliferation, while it reduced PDGF-BB-induced migration. Adhesion to fibronectin was not altered. To distinguish between the function of FAK and Pyk2, FAK function was inhibited via adenoviral-mediated overexpression of the natural FAK inhibitor FAK-related nonkinase (FRNK). Ad/FRNK had no effect on Pyk2 expression, inhibited the PDGF-BB-induced migration, but did not change the PDGF-BB-induced proliferation. FAK deficiency had only modest effects on increasing PDGF-BB activation of p38 and JNK MAPKs, with no alteration in the ERK response vs. control cells. These results demonstrate that FAK is required for the PDGF-BB-induced migratory response of adult mouse CFs and suggest that FAK could play an essential role in the wound-healing response that occurs in numerous cardiac pathologies.


1995 ◽  
Vol 270 (36) ◽  
pp. 21206-21219 ◽  
Author(s):  
Hiroko Sasaki ◽  
Kazuko Nagura ◽  
Masaho Ishino ◽  
Hirotoshi Tobioka ◽  
Kiyoshi Kotani ◽  
...  

2003 ◽  
Vol 160 (1) ◽  
pp. 137-146 ◽  
Author(s):  
Li Zeng ◽  
Xiaoning Si ◽  
Wei-Ping Yu ◽  
Hoa Thi Le ◽  
Kwok Peng Ng ◽  
...  

We investigated the molecular and cellular actions of receptor protein tyrosine phosphatase (PTP) α in integrin signaling using immortalized fibroblasts derived from wild-type and PTPα-deficient mouse embryos. Defects in PTPα−/− migration in a wound healing assay were associated with altered cell shape and focal adhesion kinase (FAK) phosphorylation. The reduced haptotaxis to fibronectin (FN) of PTPα−/− cells was increased by expression of active (but not inactive) PTPα. Integrin-mediated formation of src–FAK and fyn–FAK complexes was reduced or abolished in PTPα−/− cells on FN, concomitant with markedly reduced phosphorylation of FAK at Tyr397. Reintroduction of active (but not inactive) PTPα restored FAK Tyr-397 phosphorylation. FN-induced cytoskeletal rearrangement was retarded in PTPα−/− cells, with delayed filamentous actin stress fiber assembly and focal adhesion formation. This mimicked the effects of treating wild-type fibroblasts with the src family protein tyrosine kinase (Src-PTK) inhibitor PP2. These results, together with the reduced src/fyn tyrosine kinase activity in PTPα−/− fibroblasts (Ponniah et al., 1999; Su et al., 1999), suggest that PTPα functions in integrin signaling and cell migration as an Src-PTK activator. Our paper establishes that PTPα is required for early integrin-proximal events, acting upstream of FAK to affect the timely and efficient phosphorylation of FAK Tyr-397.


Sign in / Sign up

Export Citation Format

Share Document