Retrograde trafficking of both Golgi complex and TGN markers to the ER induced by nordihydroguaiaretic acid and cyclofenil diphenol

1998 ◽  
Vol 111 (7) ◽  
pp. 951-965 ◽  
Author(s):  
D. Drecktrah ◽  
P. de Figueiredo ◽  
R.M. Mason ◽  
W.J. Brown

Previous studies have shown that the Golgi stack and the trans-Golgi network (TGN) may play a role in capturing escaped resident endoplasmic reticulum (ER) proteins, and directing their retrograde transport back to that organelle. Whether this retrograde movement represents a highly specific or more generalized membrane trafficking pathway is unclear. To better understand both the retrograde and anterograde trafficking pathways of the secretory apparatus, we examined more closely the in vivo effects of two structurally unrelated compounds, the potent lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA), and the non-steroidal estrogen cyclofenil diphenol (CFD), both of which are known to inhibit secretion. In the presence of these compounds, transport of vesicular stomatitis virus G membrane glycoprotein from the ER to the Golgi complex, and from the TGN to the cell surface, was inhibited potently and rapidly. Surprisingly, we found that NDGA and CFD stimulated the rapid, but not concomitant, retrograde movement of both Golgi stack and TGN membrane proteins back to the ER until both organelles were morphologically absent from cells. Both NDGA- and CFD-stimulated TGN and Golgi retrograde membrane trafficking were inhibited by microtubule depolymerizing agents and energy poisons. Removal of NDGA and CFD resulted in the complete, but not concomitant, reformation of both Golgi stacks and their closely associated TGN compartments. These studies suggest that NDGA and CFD unmask a generalized bulk recycling pathway to the ER for both Golgi and TGN membranes and, further, that NDGA and CFD are useful for investigating the molecular mechanisms that control the formation and maintenance of both the Golgi stack proper and the TGN.

2001 ◽  
Vol 358 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Andrew S. OPAT ◽  
Fiona HOUGHTON ◽  
Paul A. GLEESON

The steady-state localization of medial-Golgi enzymes is likely to involve retrograde transport pathways; however, the trafficking of these resident enzymes through the Golgi stack is unclear. To investigate if the medial-Golgi enzyme β-1,2-N-acetylglucosaminyltransferase I (GlcNAc-TI) is transported to the late Golgi, a modified GlcNAc-TI bearing an N-glycan site on the C-terminus was constructed. The modified GlcNAc-TI was demonstrated to be functionally active in vivo, and was localized to the Golgi stack of transfected cells. In stable Chinese-hamster ovary (CHO) cell clones, the N-glycosylated GlcNAc-TI carried sialylated complex N-glycan chains. Pulse-chase studies showed that the majority of GlcNAc-TI was sialylated within 60min of synthesis. Treatment of transfected CHO cells with Brefeldin A resulted in the glycosylated GlcNAc-TI bearing endo-β-N-acetylglucosaminidase H resistant chains; however, the sialylation of glycosylated GlcNAc-TI was dramatically reduced. These data imply that, in CHO cells, newly synthesized GlcNAc-TI is transported rapidly through the Golgi stack to the trans-Golgi network, suggesting that GlcNAc-TI continuously recycles from the late Golgi. Furthermore, this data suggests that retrograde transport pathways play an important role in establishing the asymmetric distribution of GlcNAc-TI within the Golgi stack.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Monica Giannotta ◽  
Giorgia Fragassi ◽  
Antonio Tamburro ◽  
Capone Vanessa ◽  
Alberto Luini ◽  
...  

The KDEL receptor (KDELR) is a seven-transmembrane-domain protein involved in retrograde transport of protein chaperones from the Golgi complex to the endoplasmic reticulum. Our recent findings have shown that the Golgi-localised KDELR acts as a functional G-protein-coupled receptor by binding to and activating Gs and Gq. These G proteins induce activation of PKA and Src and regulate retrograde and anterograde Golgi trafficking. Here we used an integrated coimmunoprecipitation and mass spectrometry approach to identify prohibitin-1 (PHB) as a KDELR interactor. PHB is a multifunctional protein that is involved in signal transduction, cell-cycle control, and stabilisation of mitochondrial proteins. We provide evidence that depletion of PHB induces intense membrane-trafficking activity at the ER–Golgi interface, as revealed by formation of GM130-positive Golgi tubules, and recruitment of p115,β-COP, and GBF1 to the Golgi complex. There is also massive recruitment of SEC31 to endoplasmic-reticulum exit sites. Furthermore, absence of PHB decreases the levels of the Golgi-localised KDELR, thus preventing KDELR-dependent activation of Golgi-Src and inhibiting Golgi-to-plasma-membrane transport of VSVG. We propose a model whereby in analogy to previous findings (e.g., the RAS-RAF signalling pathway), PHB can act as a signalling scaffold protein to assist in KDELR-dependent Src activation.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Andrea Iorga ◽  
Gabriel Wong ◽  
Denise Mai ◽  
Jingyuan Li ◽  
Salil Sharma ◽  
...  

Pulmonary hypertension (PH) is a chronic lung disease characterized by progressively elevated pulmonary arterial pressures and severe pulmonary vascular remodeling resulting from interactions between oxidized lipoprotein deposition and increased endothelial proliferation. Previously we have shown increased plasma levels of biological oxidation products such as hydroxyoctadecadienoic acids (HODEs) and hydroxyeicosatetraenoic acids (HETEs) in the rat monocrotaline model of PH. Here we investigated the role of HETEs and HODEs in the development of PH and whether their inhibition with the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) attenuates the progression of PH. Mice were placed in a hypoxic chamber with O2 concentrations of ≤10% for 21 days and either left untreated to develop PH (n=7) or treated with NDGA daily (10mg/kg/day, i.p., n=4) from day 1. Direct RV catheterization was terminally performed to record RV pressure (RVP). Pulmonary arteriolar thickening and oxidized lipid deposition were assessed by staining lung sections with Masson’s Trichrome or with α-smooth muscle actin and E-06 (marker for oxidized low-density lipoproteins). In vitro, human pulmonary artery smooth muscle cell (hPASMC) proliferation was assessed by MTT assays in the absence or presence of 12-HETE (100ng/ml), 9-HODE (1µg/ml) and 13-HODE (1µg/ml) alone or together with NDGA (10, 25 and 50µM). In-vitro, HETE/HODE treatment increased hPASMC proliferation ~ 2-fold when compared to untreated cells and NDGA significantly inhibited the proliferative effects of all three oxidized lipids. In-vivo, NDGA treatment prevented the development of PH. RVP was lower in the NDGA-treated group vs. the PH group (24.01±1.39mmHg vs. 36.91±5.74mmHg, p<0.05) and was comparable to control normoxic mice (20.93±2.52mmHg). RV hypertrophy index was significantly elevated in the PH mice versus control mice (0.38±0.03 vs. 0.28±0.02 (p<0.001), while NDGA treatment completely prevented the development of RV hypertrophy (0.28±0.04). Lung sections demonstrated arteriolar thickening and E-06 positive deposits in the PH group, which was prevented by NDGA therapy. We conclude that oxidized fatty acid deposition and accumulation might play a role in the development of PH.


1989 ◽  
Vol 108 (2) ◽  
pp. 277-297 ◽  
Author(s):  
G Griffiths ◽  
S D Fuller ◽  
R Back ◽  
M Hollinshead ◽  
S Pfeiffer ◽  
...  

The intracellular transport of newly synthesized G protein of vesicular stomatitis virus is blocked at 20 degrees C and this spanning membrane glycoprotein accumulates in the last Golgi compartment, the trans Golgi-network (TGN). Previous morphological evidence suggested that the TGN enlarged significantly under this condition. In the present study we have used stereological procedures to estimate the volume and surface area of the Golgi stack and the TGN of baby hamster kidney cells under different conditions. The results indicate that the increase in the size of the TGN at 20 degrees C is accompanied by a significant decrease in the surface area and volume of the preceding Golgi compartments. A similar effect is also seen in uninfected cells at 20 degrees C, as well as during normal (37 degrees C) infection with Semliki Forest virus. In the latter case, however, the decrease in the size of the Golgi stack and the increase in that of the TGN is not accompanied by inhibition of transport from the Golgi complex to the cell surface. The results indicate that the Golgi stack and the TGN are dynamic and interrelated structures that are capable of rapid alteration in total surface area in response to changes in the rates of membrane transport.


Author(s):  
Paolo Mannella ◽  
Tommaso Simoncini ◽  
Andrea Riccardo Genazzani

AbstractSex steroids are known to regulate brain function and their role is so important that several diseases are strictly correlated with the onset of menopause when estrogen-progesterone deficiency makes neural cells much more vulnerable to toxic stimuli. Although in the past years several scientists have focused their studies on in vitro and in vivo effects of sex steroids on the brain, we are still far from complete knowledge. Indeed, contrasting results from large clinical trials have made the entire issue much more complicated. Currently we know that protective effects exerted by sex steroids depend on several factors among which the dose, the health of the cells and the type of molecule being used. In this review, we present an overview of the direct and indirect effects of estrogen and progesterone on the brain with specific focus on the molecular mechanisms by which these molecules act on neural cells.


2013 ◽  
Vol 24 (18) ◽  
pp. 2907-2917 ◽  
Author(s):  
Kohei Arasaki ◽  
Daichi Takagi ◽  
Akiko Furuno ◽  
Miwa Sohda ◽  
Yoshio Misumi ◽  
...  

Docking and fusion of transport vesicles/carriers with the target membrane involve a tethering factor–mediated initial contact followed by soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE)–catalyzed membrane fusion. The multisubunit tethering CATCHR family complexes (Dsl1, COG, exocyst, and GARP complexes) share very low sequence homology among subunits despite likely evolving from a common ancestor and participate in fundamentally different membrane trafficking pathways. Yeast Tip20, as a subunit of the Dsl1 complex, has been implicated in retrograde transport from the Golgi apparatus to the endoplasmic reticulum. Our previous study showed that RINT-1, the mammalian counterpart of yeast Tip20, mediates the association of ZW10 (mammalian Dsl1) with endoplasmic reticulum–localized SNARE proteins. In the present study, we show that RINT-1 is also required for endosome-to–trans-Golgi network trafficking. RINT-1 uncomplexed with ZW10 interacts with the COG complex, another member of the CATCHR family complex, and regulates SNARE complex assembly at the trans-Golgi network. This additional role for RINT-1 may in part reflect adaptation to the demand for more diverse transport routes from endosomes to the trans-Golgi network in mammals compared with those in a unicellular organism, yeast. The present findings highlight a new role of RINT-1 in coordination with the COG complex.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 193
Author(s):  
Alexey V. Osipov ◽  
Tatiana I. Terpinskaya ◽  
Tatsiana Yanchanka ◽  
Tatjana Balashevich ◽  
Maxim N. Zhmak ◽  
...  

Several biochemical mechanisms, including the arachidonic acid cascade and activation of nicotinic acetylcholine receptors (nAChRs), are involved in increased tumor survival. Combined application of inhibitors acting on these two pathways may result in a more pronounced antitumor effect. Here, we show that baicalein (selective 12-lipoxygenase inhibitor), nordihydroguaiaretic acid (non-selective lipoxygenase inhibitor), and indomethacin (non-selective cyclooxygenase inhibitor) are cytotoxic to Ehrlich carcinoma cells in vitro. Marine snail α-conotoxins PnIA, RgIA and ArIB11L16D, blockers of α3β2/α6β2, α9α10 and α7 nAChR subtypes, respectively, as well as α-cobratoxin, a blocker of α7 and muscle subtype nAChRs, exhibit low cytotoxicity, but enhance the antitumor effect of baicalein 1.4-fold after 24 h and that of nordihydroguaiaretic acid 1.8–3.9-fold after 48 h of cell cultivation. α-Conotoxin MII, a blocker of α6-containing and α3β2 nAChR subtypes, increases the cytotoxic effect of indomethacin 1.9-fold after 48 h of cultivation. In vivo, baicalein, α-conotoxins MII and PnIA inhibit Ehrlich carcinoma growth and increase mouse survival; these effects are greatly enhanced by the combined application of α-conotoxin MII with indomethacin or conotoxin PnIA with baicalein. Thus, we show, for the first time, antitumor synergism of α-conotoxins and arachidonic acid cascade inhibitors.


2019 ◽  
Vol 26 (27) ◽  
pp. 5152-5164 ◽  
Author(s):  
Barbara Budzynska ◽  
Caterina Faggio ◽  
Marta Kruk-Slomka ◽  
Dunja Samec ◽  
Seyed Fazel Nabavi ◽  
...  

Flavonoids are major dietary constituents of plant-based food found ubiquitously in plant kingdom where they are usually present in substantial amounts. Rutin is a flavonol-type polyphenol which consists of the flavonol quercetin and the disaccharide rutinose. Rutin has been reported to exert diverse biological effects such as antitumor and antimicrobial mainly associated to its antioxidant and anti-inflammatory activities. Mental, neurological, and behavioural disorders are an important and growing cause of morbidity. Most of these disorders combine a high prevalence, early onset, progressive clinical course, and impairment of critical brain functions making them a major contributor to the global disease burden. In the present work, the biological in vitro and in vivo effects and the potential therapeutic applications of rutin in neurodegenerative processes are reviewed, as well as their bioavailability and pharmacokinetics, which are essential for a better understanding of its biological effectiveness. Moreover, the present review also provides an overview of the molecular mechanisms through which rutin is proposed to exert its neuroprotective effects.


2000 ◽  
Vol 11 (1) ◽  
pp. 171-182 ◽  
Author(s):  
William T. Brigance ◽  
Charles Barlowe ◽  
Todd R. Graham

Pro-α-factor (pro-αf) is posttranslationally modified in the yeast Golgi complex by the addition of α1,6-, α1,2-, and α1,3-linked mannose to N-linked oligosaccharides and by a Kex2p-initiated proteolytic processing event. Previous work has indicated that the α1,6- and α1,3-mannosylation and Kex2p-dependent processing of pro-αf are initiated in three distinct compartments of the Golgi complex. Here, we present evidence that α1,2-mannosylation of pro-αf is also initiated in a distinct Golgi compartment. Linkage-specific antisera and an endo-α1,6-d-mannanase (endoM) were used to quantitate the amount of each pro-αf intermediate during transport through the Golgi complex. We found that α1,6-, α1,2-, and α1,3-mannose were sequentially added to pro-αf in a temporally ordered manner, and that the intercompartmental transport factor Sec18p/N-ethylmaleimide-sensitive factor was required for each step. The Sec18p dependence implies that a transport event was required between each modification event. In addition, most of the Golgi-modified pro-αf that accumulated in brefeldin A-treated cells received only α1,6-mannosylation as did ∼50% of pro-αf transported to the Golgi in vitro. This further supports the presence of an early Golgi compartment that houses an α1,6-mannosyltransferase but lacks α1,2-mannosyltransferase activity in vivo. We propose that the α1,6-, α1,2-, and α1,3-mannosylation and Kex2p-dependent processing events mark the cis, medial,trans, and trans-Golgi network of the yeast Golgi complex, respectively.


Author(s):  
Kai Deng ◽  
Feng Gao ◽  
Peng Zheng ◽  
Weimin Gong ◽  
Zhe Sun

Coat protein I (COPI) is a protein complex composed of seven subunits that mediates retrograde transport of proteins and lipids from thecis-Golgi network to the endoplasmic reticulum and intra-Golgi membranes. The medium-sized δ subunit of COPI (δ-COP) is a 57 kDa protein with a C-terminal domain (CTD) and an N-terminal longin domain. Here, the δ-COP CTD was successfully cloned, purified and crystallized. Diffraction data were collected from native and selenomethionyl crystals of δ-COP CTD to resolutions of 2.60 and 2.30 Å, respectively. Both crystals belonged to space groupP21212, with similar unit-cell parameters. The native crystals had unit-cell parametersa= 100.23,b= 136.77,c = 44.39 Å.


Sign in / Sign up

Export Citation Format

Share Document