scholarly journals Paclitaxel-dependent mutants have severely reduced microtubule assembly and reduced tubulin synthesis

2002 ◽  
Vol 115 (17) ◽  
pp. 3469-3478
Author(s):  
Steven B. Barlow ◽  
Manuel L. Gonzalez-Garay ◽  
Fernando Cabral

A subset of mutant cell lines selected for resistance to the antitumor drug paclitaxel are unable to progress normally through mitosis unless the drug is present in the growth medium. Without paclitaxel the cells form defective spindles, undergo aberrant mitoses, fail to complete cell division and eventually die. Analysis of these drug-dependent cells revealed a low amount of microtubule polymer and less tubulin production than wild-type cells. Ribonuclease protection experiments indicated that the decreased tubulin protein was due to decreased tubulin mRNA. Enhancing microtubule assembly by treating the cells with paclitaxel, restored tubulin to levels comparable with those of paclitaxel-treated wild-type cells, which demonstrated that the drug-dependent cells do not have a permanent impairment in their capacity to synthesize tubulin. Paclitaxel-resistant (but not dependent) cells have a smaller reduction in microtubule polymer with little or no decrease in tubulin production, whereas colcemidresistant cells have increased microtubule assembly but also exhibit little or no change in tubulin production. Finally,a mutant cell line producing an unstable β-tubulin protein has normal growth as well as normal synthesis and polymerization of tubulin, despite an approximately 30% decrease in steady state tubulin content. These studies establish a lower limit of tubulin assembly needed for cell survival and indicate that tubulin assembly must fall below this point to trigger a significant decrease in tubulin synthesis.

2021 ◽  
Vol 22 (10) ◽  
pp. 5064
Author(s):  
Qinghua Chen ◽  
Linghui Guo ◽  
Yanwen Yuan ◽  
Shuangling Hu ◽  
Fei Guo ◽  
...  

Histone methylation plays an important regulatory role in the drought response of many plants, but its regulatory mechanism in the drought response of the tea plant remains poorly understood. Here, drought stress was shown to induce lower relative water content and significantly downregulate the methylations of histone H3K4 in the tea plant. Based on our previous analysis of the SET Domain Group (SDG) gene family, the full-length coding sequence (CDS) of CsSDG36 was cloned from the tea cultivar ‘Fuding Dabaicha’. Bioinformatics analysis showed that the open reading frame (ORF) of the CsSDG36 gene was 3138 bp, encoding 1045 amino acids and containing the conserved structural domains of PWWP, PHD, SET and PostSET. The CsSDG36 protein showed a close relationship to AtATX4 of the TRX subfamily, with a molecular weight of 118,249.89 Da, and a theoretical isoelectric point of 8.87, belonging to a hydrophilic protein without a transmembrane domain, probably located on the nucleus. The expression of CsSDG36 was not detected in the wild type, while it was clearly detected in the over-expression lines of Arabidopsis. Compared with the wild type, the over-expression lines exhibited lower hyperosmotic resistance by accelerating plant water loss, increasing reactive oxygen species (ROS) pressure, and increasing leaf stomatal density. RNA-seq analysis suggested that the CsSDG36 overexpression caused the differential expression of genes related to chromatin assembly, microtubule assembly, and leaf stomatal development pathways. qRT-PCR analysis revealed the significant down-regulation of stomatal development-related genes (BASL, SBT1.2(SDD1), EPF2, TCX3, CHAL, TMM, SPCH, ERL1, and EPFL9) in the overexpression lines. This study provides a novel sight on the function of histone methyltransferase CsSDG36 under drought stress.


Genetics ◽  
1995 ◽  
Vol 139 (1) ◽  
pp. 267-286 ◽  
Author(s):  
J D Fackenthal ◽  
J A Hutchens ◽  
F R Turner ◽  
E C Raff

Abstract We have determined the lesions in a number of mutant alleles of beta Tub85D, the gene that encodes the testis-specific beta 2-tubulin isoform in Drosophila melanogaster. Mutations responsible for different classes of functional phenotypes are distributed throughout the beta 2-tubulin molecule. There is a telling correlation between the degree of phylogenetic conservation of the altered residues and the number of different microtubule categories disrupted by the lesions. The majority of lesions occur at positions that are evolutionarily highly conserved in all beta-tubulins; these lesions disrupt general functions common to multiple classes of microtubules. However, a single allele B2t6 contains an amino acid substitution within an internal cluster of variable amino acids that has been identified as an isotype-defining domain in vertebrate beta-tubulins. Correspondingly, B2t6 disrupts only a subset of microtubule functions, resulting in misspecification of the morphology of the doublet microtubules of the sperm tail axoneme. We previously demonstrated that beta 3, a developmentally regulated Drosophila beta-tubulin isoform, confers the same restricted morphological phenotype in a dominant way when it is coexpressed in the testis with wild-type beta 2-tubulin. We show here by complementation analysis that beta 3 and the B2t6 product disrupt a common aspect of microtubule assembly. We therefore conclude that the amino acid sequence of the beta 2-tubulin internal variable region is required for generation of correct axoneme morphology but not for general microtubule functions. As we have previously reported, the beta 2-tubulin carboxy terminal isotype-defining domain is required for suprastructural organization of the axoneme. We demonstrate here that the beta 2 variant lacking the carboxy terminus and the B2t6 variant complement each other for mild-to-moderate meiotic defects but do not complement for proper axonemal morphology. Our results are consistent with the hypothesis drawn from comparisons of vertebrate beta-tubulins that the two isotype-defining domains interact in a three-dimensional structure in wild-type beta-tubulins. We propose that the integrity of this structure in the Drosophila testis beta 2-tubulin isoform is required for proper axoneme assembly but not necessarily for general microtubule functions. On the basis of our observations we present a model for regulation of axoneme microtubule morphology as a function of tubulin assembly kinetics.


2006 ◽  
Vol 74 (7) ◽  
pp. 3874-3879 ◽  
Author(s):  
Xinghong Yang ◽  
Todd Becker ◽  
Nancy Walters ◽  
David W. Pascual

ABSTRACT znuA is known to be an important factor for survival and normal growth under low Zn2+ concentrations for Escherichia coli, Haemophilus spp., Neisseria gonorrhoeae, and Pasteurella multocida. We hypothesized that the znuA gene present in Brucella melitensis 16 M would be similar to znuA in B. abortus and questioned whether it may also be an important factor for growth and virulence of Brucella abortus. Using the B. melitensis 16 M genome sequence, primers were designed to construct a B. abortus deletion mutant. A znuA knockout mutation in B. abortus 2308 (ΔznuA) was constructed and found to be lethal in low-Zn2+ medium. When used to infect macrophages, ΔznuA B. abortus showed minimal growth. Further study with ΔznuA B. abortus showed that its virulence in BALB/c mice was attenuated, and most of the bacteria were cleared from the spleen within 8 weeks. Protection studies confirmed the ΔznuA mutant as a potential live vaccine, since protection against wild-type B. abortus 2308 challenge was as effective as that obtained with the RB51 or S19 vaccine strain.


1974 ◽  
Vol 23 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Joseph Greenberg ◽  
Leonard J. Berends ◽  
John Donch ◽  
Michael H. L. Green

SUMMARYPAM 26, a radiation-sensitive mutant ofEscherichia colistrain B, is described. Its properties are attributable to a mutation in a gene,exrB, which is cotransducible withmalB. It differs fromuvrA(alsomalB-linked) derivatives of strain B in being sensitive to 1-methyl-3-nitro-1-nitroso-guanidine and γ-radiation, and in being able to reactivate UV-irradiated phage T3. It differs fromexrA(alsomalB-linked) derivatives of strain B in forming filaments during the course of normal growth as well as after irradiation. WhenexrBwas transduced into a K12 (lon+) strain, filaments did not form spontaneously. Three-point transductions established the order of markers asmet A malB exrB. Based on an analysis of the frequency of wild-type recombinants in a reciprocal transduction betweenexrAandexrBstrains, it was inferred that they are not isogenic and that the order of markers ismalB exrA exrB.


1998 ◽  
Vol 18 (10) ◽  
pp. 5744-5749 ◽  
Author(s):  
Irene Verkerke-Van Wijk ◽  
Ji-Yun Kim ◽  
Raymond Brandt ◽  
Peter N. Devreotes ◽  
Pauline Schaap

ABSTRACT Serpentine receptors such as smoothened and frizzled play important roles in cell fate determination during animal development. InDictyostelium discoideum, four serpentine cyclic AMP (cAMP) receptors (cARs) regulate expression of multiple classes of developmental genes. To understand their function, it is essential to know whether each cAR is coupled to a specific gene regulatory pathway or whether specificity results from the different developmental regulation of individual cARs. To distinguish between these possibilities, we measured gene induction in car1 car3 double mutant cell lines that express equal levels of either cAR1, cAR2, or cAR3 under a constitutive promoter. We found that all cARs efficiently mediate both aggregative gene induction by cAMP pulses and induction of postaggregative and prespore genes by persistent cAMP stimulation. Two exceptions to this functional promiscuity were observed. (i) Only cAR1 can mediate adenosine inhibition of cAMP-induced prespore gene expression, a phenomenon that was found earlier in wild-type cells. cAR1’s mediation of adenosine inhibition suggests that cAR1 normally mediates prespore gene induction. (ii) Only cAR2 allows entry into the prestalk pathway. Prestalk gene expression is induced by differentiation-inducing factor (DIF) but only after cells have been prestimulated with cAMP. We found that DIF-induced prestalk gene expression is 10 times higher in constitutive cAR2 expressors than in constitutive cAR1 or cAR3 expressors (which still have endogenous cAR2), suggesting that cAR2 mediates induction of DIF competence. Since in wild-type slugs cAR2 is expressed only in anterior cells, this could explain the so far puzzling observations that prestalk cells differentiate at the anterior region but that DIF levels are actually higher at the posterior region. After the initial induction of DIF competence, cAMP becomes a repressor of prestalk gene expression. This function can again be mediated by cAR1, cAR2, and cAR3.


2021 ◽  
Author(s):  
Hui Song ◽  
Feng Chen ◽  
Xi Wu ◽  
Min Hu ◽  
Qingliu Geng ◽  
...  

Abstract Abstract Iron (Fe) is an indispensable mineral element for normal growth of plants. Fe deficiency induces a complex series of responses in plants, involving physiological and developmental changes, to increase Fe uptake from soil. However, the molecular mechanism involved in plant Fe-deficiency is not well understood. Here, we found that the MNB1 gene is involved in modulating Fe-deficiency response in Arabidopsis thaliana . The expression of MNB1 was inhabited by Fe-deficiency stress. Knockout of MNB1 led to enhanced Fe accumulation and tolerance, whereas the MNB1-overexpressing plants were sensitive to Fe-deficiency stress. Lower H 2 O 2 concentrations in mnb1 mutant plants were examined under Fe deficiency circumstances compared to wild-type. On the contray, higher H 2 O 2 concentrations were found in MNB1-overexpressing plants, which was adversely linked with malondialdehyde (MDA) concentrations. Furthermore, in mnb1 mutants, the transcription level of the Fe-uptake and translocation genes, FIT , IRT1 , FRO2 , Z IF , FRD3 , NAS4 , PYE and MYB72 , were considerably elevated during Fe-deficiency stress, resulting in higher Fe accumulation. Together, our findings show that the MNB1 gene negatively controls the Fe-deficiency response in Arabidopsis via modulating reactive oxygen species (ROS) levels and the ROS-mediated signaling pathway, thereby affecting the expression of Fe-uptake and translocation genes.


Genetics ◽  
1994 ◽  
Vol 136 (1) ◽  
pp. 145-154
Author(s):  
I Katsura ◽  
K Kondo ◽  
T Amano ◽  
T Ishihara ◽  
M Kawakami

Abstract We have isolated 13 fluoride-resistant mutants of the nematode Caenorhabditis elegans. All the mutations are recessive and mapped to five genes. Mutants in three of the genes (class 1 genes: flr-1 X, flr-3 IV, and flr-4 X) are resistant to 400 micrograms/ml NaF. Furthermore, they grow twice as slowly as and have smaller brood size than wild-type worms even in the absence of fluoride ion. In contrast, mutants in the other two genes (class 2 genes: flr-2 V and flr-5 V) are only partially resistant to 400 micrograms/ml NaF, and they have almost normal growth rates and brood sizes in the absence of fluoride ion. Studies on the phenotypes of double mutants showed that class 2 mutations are epistatic to class 1 mutations concerning growth rate and brood size but hypostatic with respect to fluoride resistance. We propose two models that can explain the epistasis. Since fluoride ion depletes calcium ion, inhibits some protein phosphatases and activates trimeric G-proteins, studies on these mutants may lead to discovery of a new signal transduction system that controls the growth of C. elegans.


1981 ◽  
Vol 51 (1) ◽  
pp. 203-217
Author(s):  
D.P. Dickinson

The cell cycle of a growing cel is characterized by 3 main periodic events: DNA synthesis mitosis and cell division. These events generally lie in a dependent sequence, in which one event cannot occur unless preceding events have occurred. The existence of dependent sequences of events raises the possibility that at least some of the gene products involved in the events are synthesized in a dependent sequence parallel to the observable events. To test this hypothesis, the patterns of polypeptide synthesis were investigated in 2 types of cell cycle mutant of the fission yeast Schizosaccharomyces pombe: temperature-sensitive cell cycle (ts cdc) mutants. which become blocked in cell cycle progress at the restrictive temperature; and wee I mutants, which are defective in size control over nuclear division, and which divide at a small size. Cells of mutants and wild-type cells were labelled with [35S[sulphate under conditions designed to maximize any differences between the labelling patterns of wild-type and mutant cell polypeptides. The polypeptides were then separated by O'Farrell 2-dimensional gel electrophoresis, and the patterns compared. Although both types of mutation affect cell cycle control, and cause a considerable alteration in the relative proportions of cellular components, an examination of over 700 polypeptides detected on gels revealed no qualitative differences between wild-type and mutant cell polypeptides. These results suggest that a large majority of the more abundant polypeptides in the growing cell are synthesized independently of cell cycle controls directly related to DNA synthesis and division, and that the synthesis of these polypeptides can occur in the absence of normal progress through the cell cycle. Dependent sequences of gene expression do not appear to make a significant contribution to total polypeptide synthesis during the cell cycle, or to the occurrence of periodic cell cycle events such as mitosis. It is suggested that such cell cycle events may result largely through the reorganization of existing cellular components, rather than by the synthesis of new ones. An unsuccessful attempt was made to detect the wee I gene product on gels by surveying a range of mutants for changes in an individual spot. The limitations of gel electrophoresis for this type of survey, and other cell cycle experiments, are discussed.


1995 ◽  
Vol 108 (3) ◽  
pp. 1105-1115 ◽  
Author(s):  
E. Shelden ◽  
D.A. Knecht

We have used fluorescent labeling, confocal microscopy and computer-assisted motion analysis to observe and quantify individual wild-type and myosin II mutant cell behavior during early multicellular development in Dictyostelium discoideum. When cultured with an excess of unlabeled wild-type cells, labeled control cells are randomly distributed within aggregation streams, while myosin II mutant cells are found primarily at the lateral edges of streams. Wild-type cells move at average rates of 8.5 +/- 4.9 microns/min within aggregation streams and can exhibit regular periodic movement at 3.5 minute intervals; half as long as the 7 minute period reported previously for isolated cells. Myosin II mutants under the same conditions move at 5.0 +/- 4.8 microns/min, twice as fast as reported previously for isolated myosin II mutant cells, and fail to display regular periodic movement. When removed from aggregation streams myosin II mutant cells move at only 2.5 +/- 2.0 microns/min, while wild-type cells under these conditions move at 5.9 +/- 4.5 microns/min. Analysis of cell morphology further reveals that myosin II mutant cells are grossly and dynamically deformed within wild-type aggregation streams but not when removed from streams and examined in isolation. These data reveal that the loss of myosin II has dramatic consequences for cells undergoing multicellular development. The segregation of mutant cells to aggregation stream edges demonstrates that myosin II mutants are unable to penetrate a multicellular mass of wild-type cells, while the observed distortion of myosin II mutant cells suggests that the cortex of such cells is too flacid to resist forces generated during movement. The increased rate of mutant cell movement and distortion of mutant cell morphology seen within wild-type aggregation streams further argues both that movement of wild-type cells within a multicellular mass can generate traction forces on neighboring cells and that mutant cell morphology and behavior can be altered by these forces. In addition, the distortion of myosin II mutant cells within wild-type aggregation streams indicates that myosin is not required for the formation of cell-cell contacts. Finally, the consequences of the loss of myosin II for cells during multicellular development are much more severe than has been previously revealed for isolated cells. The techniques used here to analyze the behavior of individual cells within multicellular aggregates provide a more sensitive assay of mutant cell phenotype than has been previously available and will be generally applicable to the study of motility and cytoskeletal mutants in Dictyostelium.


1988 ◽  
Vol 90 (1) ◽  
pp. 59-71
Author(s):  
M. Schleicher ◽  
A. Noegel ◽  
T. Schwarz ◽  
E. Wallraff ◽  
M. Brink ◽  
...  

Cells of a Dictyostelium discoideum mutant deficient in binding a monoclonal antibody to alpha-actinin have previously been shown to grow and develop similarly to the wild type and to exert unimpaired chemotaxis as well as patching and capping of membrane proteins. Here we show that the normal 3.0 kb message for alpha-actinin is replaced in the mutant by two RNA species of approximately 3.1 and 2.8 kb. The 3.1 kb RNA was recognized by DNA fragments from all parts of the coding region, while the 2.8 kb RNA hybridized to all but a 3′-terminal fragment. Proteins synthesized in the mutant were analysed using four monoclonal antibodies that in the wild type specifically recognize the 95 × 10(3) Mr polypeptide of alpha-actinin. Cleavage mapping indicated that the binding sites of these antibodies are distributed over a region comprising more than half of the alpha-actinin polypeptide chain. In the mutant, three of the antibodies faintly labelled two polypeptides of 95 × 10(3) Mr and 88 × 10(3) Mr; the fourth antibody, which binds closest to one end of the polypeptide chain, faintly labelled the 95 × 10(3) Mr polypeptide only. The 88 × 10(3) Mr polypeptide most probably lacks the C-terminal portion of alpha-actinin. The binding of an antibody that recognized both polypeptides was quantified by a radio-immuno competition assay using wild-type alpha-actinin as a reference. In a mutant cell extract containing total soluble proteins the antibody binding activity was decreased to 1.1% when compared with wild-type extract. After their partial purification and SDS-polyacrylamide gel electrophoresis the mutant 95 × 10(3) Mr and 88 × 10(3) Mr polypeptides were barely detectable as Coomassie Blue-stained bands, indicating that in the mutant not only certain epitopes of alpha-actinin were altered but the entire molecule is almost completely lacking. When the fitness of mutant cells relative to wild type was determined during growth in nutrient medium, a slight disadvantage for the mutant was indicated, by finding selection coefficients between 0.03 and 0.05.


Sign in / Sign up

Export Citation Format

Share Document