Mechanics of Forward Flight in Bumblebees: I. Kinematics and Morphology

1990 ◽  
Vol 148 (1) ◽  
pp. 19-52 ◽  
Author(s):  
R. DUDLEY ◽  
C. P. ELLINGTON

Using high-speed cinematography, bumblebees in free flight were filmed over a range of forward airspeeds. A detailed description of the wing tip and body kinematics was obtained from a three-dimensional reconstruction of the twodimensional film image. A technique for determining quantitatively the angle of attack of the wing was developed. Kinematic parameters found to vary consistently with airspeed were body angle, stroke plane angle, geometrical angle of attack, and rotational angles of the wings at the ends of half-strokes. Results of a morphological analysis of the wings and bodies of thoseinsects filmed in free flight are presented for use in later calculations of the lift and power requirements of forward flight.

1997 ◽  
Vol 200 (21) ◽  
pp. 2693-2704 ◽  
Author(s):  
A Willmott ◽  
C Ellington

A robust technique for determining the angle of attack of insect wings from film of free flight has to date proved elusive. This report describes the development of two new methods ­ the Strips and Planes techniques ­ which were designed to overcome some of the limitations experienced in previous studies. The accuracy and robustness of these novel methods were tested extensively using simulated hawkmoth wing outlines generated for a realistic range of wing positions and torsion. The results were compared with those from two existing methods ­ the Symmetry and Landmarks procedures. The performance of the latter technique will be strongly species-dependent; it could not be successfully applied to hawkmoth flight because of practical difficulties in obtaining suitable landmarks. The Planes method was the least successful of the remaining techniques, especially during those phases of the wingbeat when the orientations of the two wings relative to the camera viewpoint were similar. The Symmetry and Strips methods were tested further to investigate the effects on their performance of introducing additional camber or wing motion asymmetry. The results showed clearly that the Strips method should be the technique of choice wherever the axis of wing torsion is close to the longitudinal axis of the wing. The procedure involves the experimenter matching a model wing divided into chordwise strips to the true wing outline digitized from high-speed film. The use of strips rather than the points digitized in previous studies meant that the analysis required only one wing outline to be digitized. Symmetry of motion between the left and right wings is not assumed. The implications of requiring human input to the Strips method, as opposed to the strictly numerical algorithms of the alternative techniques, are discussed. It is argued that the added flexibility that this provides in dealing with images which have typically been recorded in suboptimal conditions outweighs the introduction of an element of subjectivity. Additional observations arising from the use of the Strips analysis with high-speed video sequences of hawkmoth flight are given.


1989 ◽  
Vol 142 (1) ◽  
pp. 49-85 ◽  
Author(s):  
A. ROLAND ENNOS

Seven representative species of the order Diptera were filmed in free flight using high-speed cinematography. Insects were killed after filming, and morphological measurements were made in the manner of Ellington (1984b). The detailed kinematics of selected sequences were then found using frame-by-frame digitization, followed by computer reconstruction of the third dimension. Kinematics were qualitatively similar to those observed by Ellington (1984c), though in three species the wings often underwent ventral flexion near the base at the end of the downstroke. For aerodynamic analysis of hovering flight, modified forms of the equations of Ellington (1984e,f) were used. Forward flight was analysed by a novel method, which assumes that an equal but opposite circulation is built up for each half-stroke and allows linear equations to be used. The lift coefficients calculated for hovering were commonly well above those possible by quasi-steady mechanisms, but rotational coefficients were within those that could be achieved by the unsteady lift mechanisms: clap-and-fling (Weis-Fogh, 1973) and flex (Ellington, 1984d). The lift and rotational coefficients of the two half-strokes were often unequal. In forward flight, the equal circulation assumption often led to an incorrect estimation of the aerodynamic force vector, showing that the circulations during the two half-strokes were unequal. It is suggested that flies manoeuvre largely by altering the unsteady circulations produced at stroke reversal via alterations in the speed and timing of wing rotation. The differences in the mechanisms used by different fly species are related to their flight behaviour in the field.


2015 ◽  
Vol 12 (102) ◽  
pp. 20141116 ◽  
Author(s):  
Hui Wan ◽  
Haibo Dong ◽  
Kuo Gai

Free forward flight of cicadas is investigated through high-speed photogrammetry, three-dimensional surface reconstruction and computational fluid dynamics simulations. We report two new vortices generated by the cicada's wide body. One is the thorax-generated vortex, which helps the downwash flow, indicating a new phenomenon of lift enhancement. Another is the cicada posterior body vortex, which entangles with the vortex ring composed of wing tip, trailing edge and wing root vortices. Some other vortex features include: independently developed left- and right-hand side leading edge vortex (LEV), dual-core LEV structure at the mid-wing region and near-wake two-vortex-ring structure. In the cicada forward flight, approximately 79% of the total lift is generated during the downstroke. Cicada wings experience drag in the downstroke, and generate thrust during the upstroke. Energetics study shows that the cicada in free forward flight consumes much more power in the downstroke than in the upstroke, to provide enough lift to support the weight and to overcome drag to move forward.


2021 ◽  
Vol 11 (6) ◽  
pp. 2620
Author(s):  
Yixin Zhang ◽  
Xingjian Wang ◽  
Shaoping Wang ◽  
Wenhao Huang ◽  
Qiwang Weng

To ensure the stability of flight, the butterfly needs to flap its wings and simultaneously move its main body to achieve all kinds of flying motion, such as taking off, hovering, or reverse flight. The high-speed camera is used to record the swing of the abdomen, the movement of the wings, and the pitch angle of the body for butterflies during their free flight; the comprehensive biokinetic observations show that the butterfly’s wings and body are coupled in various flight states. The swing of the abdomen and the flap of the fore wing affect the pitch motion significantly. For theoretical analysis of the butterfly flight, a three-dimensional multi-rigid butterfly model based on real butterfly dimension is established, and the aerodynamic of the butterfly flight is simulated and analyzed via computational fluid dynamics methods to obtain an optimal kinematic model of butterfly forward flight. Moreover, the formation and development of three-dimensional vortex structures in the forward flight are also presented. The detailed structures of vortices and their dynamic behavior show that the wing’s flap and the abdominal swing play a key role in reorienting and correcting the “clap and peel” mechanism, and the force generation mechanisms are evaluated. The research indicates that longitudinal flight performance is mainly related to the kinematic parameters of the wing and body, and it can lead to the development of butterfly-inspired flapping wing air vehicles.


1984 ◽  
Vol 247 (3) ◽  
pp. E412-E419 ◽  
Author(s):  
L. S. Hibbard ◽  
R. A. Hawkins

Quantitative autoradiography is a powerful method for studying brain function by the determination of blood flow, glucose utilization, or transport of essential nutrients. Autoradiographic images contain vast amounts of potentially useful information, but conventional analyses can practically sample the data at only a small number of points arbitrarily chosen by the experimenter to represent discrete brain structures. To use image data more fully, computer methods for its acquisition, storage, quantitative analysis, and display are required. We have developed a system of computer programs that performs these tasks and has the following features: 1) editing and analysis of single images using interactive graphics, 2) an automatic image alignment algorithm that places images in register with one another using only the mathematical properties of the images themselves, 3) the calculation of mean images from equivalent images in different experimental serial image sets, 4) the calculation of difference images (e.g., experiment-minus-control) with the option to display only differences estimated to be statistically significant, and 5) the display of serial image metabolic maps reconstructed in three dimensions using a high-speed computer graphics system.


1997 ◽  
Vol 200 (21) ◽  
pp. 2705-2722 ◽  
Author(s):  
A P Willmott ◽  
C P Ellington

High-speed videography was used to record sequences of individual hawkmoths in free flight over a range of speeds from hovering to 5 ms-1. At each speed, three successive wingbeats were subjected to a detailed analysis of the body and wingtip kinematics and of the associated time course of wing rotation. Results are presented for one male and two female moths. The clearest kinematic trends accompanying increases in forward speed were an increase in stroke plane angle and a decrease in body angle. The latter may have resulted from a slight dorsal shift in the area swept by the wings as the supination position became less ventral with increasing speed. These trends were most pronounced between hovering and 3 ms-1, and the changes were gradual; there was no distinct gait change of the kind observed in some vertebrate fliers. The wing rotated as two functional sections: the hindwing and the portion of the forewing with which it is in contact, and the distal half of the forewing. The latter displayed greater fluctuation in the angle of rotation, especially at the lower speeds. As forward speed increased, the discrepancy between the rotation angles of the two halfstrokes, and of the two wing sections, became smaller. The downstroke wing torsion was set early in the halfstroke and then held constant during the translational phase.


2008 ◽  
Vol 610 ◽  
pp. 195-215 ◽  
Author(s):  
A. ANDRIOTIS ◽  
M. GAVAISES ◽  
C. ARCOUMANIS

Flow visualization as well as three-dimensional cavitating flow simulations have been employed for characterizing the formation of cavitation inside transparent replicas of fuel injector valves used in low-speed two-stroke diesel engines. The designs tested have incorporated five-hole nozzles with cylindrical as well as tapered holes operating at different fixed needle lift positions. High-speed images have revealed the formation of an unsteady vapour structure upstream of the injection holes inside the nozzle volume, which is referred to as ‘string-cavitation’. Computation of the flow distribution and combination with three-dimensional reconstruction of the location of the strings inside the nozzle volume has revealed that strings are found at the core of recirculation zones; they originate either from pre-existing cavitation sites forming at sharp corners inside the nozzle where the pressure falls below the vapour pressure of the flowing liquid, or even from suction of outside air downstream of the hole exit. Processing of the acquired images has allowed estimation of the mean location and probability of appearance of the cavitating strings in the three-dimensional space as a function of needle lift, cavitation and Reynolds number. The frequency of appearance of the strings has been correlated with the Strouhal number of the vortices developing inside the sac volume; the latter has been found to be a function of needle lift and hole shape. The presence of strings has significantly affected the flow conditions at the nozzle exit, influencing the injected spray. The cavitation structures formed inside the injection holes are significantly altered by the presence of cavitation strings and are jointly responsible for up to 10% variation in the instantaneous fuel injection quantity. Extrapolation using model predictions for real-size injectors operating at realistic injection pressures indicates that cavitation strings are expected to appear within the time scales of typical injection events, implying significant hole-to-hole and cycle-to-cycle variations during the corresponding spray development.


1988 ◽  
Vol 4 (3) ◽  
pp. 231-259 ◽  
Author(s):  
Ross H. Sanders ◽  
Barry D. Wilson

This study investigated factors contributing to the maximum height achieved by divers after takeoff from the 3m springboard. Twelve elite male divers and 12 elite female divers competing in the 1986 Australian National Championships were filmed using high-speed cinematography. Kinematic and kinetic data for the takeoff phase were derived from the digitized film. Variables analyzed included center of gravity (CG) displacement and velocity, the acceleration of the CG relative to the springboard, and the components of mechanical energy contributing to height achieved by the diver’s CG. Body orientation was described in terms of the angles at the hip, knee, and ankle, and whole body angle of lean. Comparison of timing differences among dive groups and divers was aided by normalizing the data with respect to time. It was found that the height achieved was highly dependent on the rotational requirements of the dive, with males achieving greater heights than females. Divers who achieve good height compared to other divers performing the same dive are characterized by a large vertical velocity at touchdown from the hurdle and a minimization of hip flexion (forward dives) and knee flextion (reverse dives) at takeoff.


2012 ◽  
Vol 9 (77) ◽  
pp. 3260-3267 ◽  
Author(s):  
V. Medici ◽  
S. N. Fry

Fruitflies regulate flight speed by adjusting their body angle. To understand how low-level posture control serves an overall linear visual speed control strategy, we visually induced free-flight acceleration responses in a wind tunnel and measured the body kinematics using high-speed videography. Subsequently, we reverse engineered the transfer function mapping body pitch angle onto flight speed. A linear model is able to reproduce the behavioural data with good accuracy. Our results show that linearity in speed control is realized already at the level of body posture-mediated speed control and is therefore embodied at the level of the complex aerodynamic mechanisms of body and wings. Together with previous results, this study reveals the existence of a linear hierarchical control strategy, which can provide relevant control principles for biomimetic implementations, such as autonomous flying micro air vehicles.


Sign in / Sign up

Export Citation Format

Share Document