The Control of Emergence and Metabolism by External Osmotic Pressure and the Role of Free Glycerol in Developing Cysts of Artemia Salina

1964 ◽  
Vol 41 (4) ◽  
pp. 879-892
Author(s):  
JAMES S. CLEGG

1. The effects of external osmotic pressure on the rates of development and emergence, respiration, and on changes in glycogen, glycerol, and trehalose concentrations have been studied in cysts of Artemia salina. 2. The only measured effect of external osmotic pressures less than 30 atm. on emergence and development is to determine the time required for the embryo to emerge from the cyst. Above this value the onset, rate, and final percent of emergence decrease. No emergence occurs at osmotic pressures greater than about 65 atm. 3. The oxygen consumption decreases with increased osmotic pressure, and is negligible at about 65 atm. 4. Several lines of evidence show that trehalose is the respiratory substrate, that most of the trehalose present in the dormant embryo is converted to glycogen and glycerol during development, and that the direction and extent of these conversions are controlled by the external osmotic pressure. 5. Glycerol appears to be present in at least two distinct locations in the cyst: within the embryo, and between the embryo and shell. Glycerol in the latter location is released into the medium at the time of emergence; the embryonic glycerol is rapidly metabolized after emergence. 6. The physiological significance of glycerol and trehalose in the emergence process is discussed.

1983 ◽  
Vol 61 (10) ◽  
pp. 1177-1184 ◽  
Author(s):  
Chi-Chung Chan ◽  
Florent Depocas

Oxygen consumption and plasma noradrenaline concentration were increased significantly above resting levels in warm-acclimated and in cold-acclimated rats exposed to an ambient temperature of 4 °C. Administration of normetanephrine (1 μg∙min−1∙g body weight−0.74), but not of desmethylimipramine (1 mg∙kg−1), resulted in higher resting plasma noradrenaline levels at 24 °C and increased the length of time required for the oxygen consumption to return to resting levels after cold exposure in both acclimation groups. These observations support a significant role of extraneuronal uptake in noradrenaline inactivation under normal physiological conditions. Calorigenic responses to cold exposure were not affected at all by treatment of animals with desmethylimipramine and (or) normetanephrine in either warm-acclimated or cold-acclimated rats, although an enhancing effect of these uptake inhibitors on plasma noradrenaline was evident in cold-acclimated rats. It is suggested that a peripheral–central thermoregulatory mechanism adjusts activation of thermogenic effectors so as to maintain a steady calorigenic response, appropriate to the thermal demand of the environment, to compensate for changes in perineuronal concentration of noradrenaline in sympathetic thermoeffectors owing to blockade of extraneuronal uptake.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3936
Author(s):  
Yannis Spyridis ◽  
Thomas Lagkas ◽  
Panagiotis Sarigiannidis ◽  
Vasileios Argyriou ◽  
Antonios Sarigiannidis ◽  
...  

Unmanned aerial vehicles (UAVs) in the role of flying anchor nodes have been proposed to assist the localisation of terrestrial Internet of Things (IoT) sensors and provide relay services in the context of the upcoming 6G networks. This paper considered the objective of tracing a mobile IoT device of unknown location, using a group of UAVs that were equipped with received signal strength indicator (RSSI) sensors. The UAVs employed measurements of the target’s radio frequency (RF) signal power to approach the target as quickly as possible. A deep learning model performed clustering in the UAV network at regular intervals, based on a graph convolutional network (GCN) architecture, which utilised information about the RSSI and the UAV positions. The number of clusters was determined dynamically at each instant using a heuristic method, and the partitions were determined by optimising an RSSI loss function. The proposed algorithm retained the clusters that approached the RF source more effectively, removing the rest of the UAVs, which returned to the base. Simulation experiments demonstrated the improvement of this method compared to a previous deterministic approach, in terms of the time required to reach the target and the total distance covered by the UAVs.


2021 ◽  
Vol 22 (5) ◽  
pp. 2578
Author(s):  
Trim Lajqi ◽  
Christian Marx ◽  
Hannes Hudalla ◽  
Fabienne Haas ◽  
Silke Große ◽  
...  

Microglia, the innate immune cells of the CNS, exhibit long-term response changes indicative of innate immune memory (IIM). Our previous studies revealed IIM patterns of microglia with opposing immune phenotypes: trained immunity after a low dose and immune tolerance after a high dose challenge with pathogen-associated molecular patterns (PAMP). Compelling evidence shows that innate immune cells adopt features of IIM via immunometabolic control. However, immunometabolic reprogramming involved in the regulation of IIM in microglia has not been fully addressed. Here, we evaluated the impact of dose-dependent microglial priming with ultra-low (ULP, 1 fg/mL) and high (HP, 100 ng/mL) lipopolysaccharide (LPS) doses on immunometabolic rewiring. Furthermore, we addressed the role of PI3Kγ on immunometabolic control using naïve primary microglia derived from newborn wild-type mice, PI3Kγ-deficient mice and mice carrying a targeted mutation causing loss of lipid kinase activity. We found that ULP-induced IIM triggered an enhancement of oxygen consumption and ATP production. In contrast, HP was followed by suppressed oxygen consumption and glycolytic activity indicative of immune tolerance. PI3Kγ inhibited glycolysis due to modulation of cAMP-dependent pathways. However, no impact of specific PI3Kγ signaling on immunometabolic rewiring due to dose-dependent LPS priming was detected. In conclusion, immunometabolic reprogramming of microglia is involved in IIM in a dose-dependent manner via the glycolytic pathway, oxygen consumption and ATP production: ULP (ultra-low-dose priming) increases it, while HP reduces it.


Hematology ◽  
2007 ◽  
Vol 2007 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Marilyn J. Telen

AbstractA number of lines of evidence now support the hypothesis that vaso-occlusion and several of the sequelae of sickle cell disease (SCD) arise, at least in part, from adhesive interactions of sickle red blood cells, leukocytes, and the endothelium. Both experimental and genetic evidence provide support for the importance of these interactions. It is likely that future therapies for SCD might target one or more of these interactions.


2017 ◽  
Vol 30 (8) ◽  
pp. 631-645 ◽  
Author(s):  
Ying Wen Huang ◽  
Chung Chi Hu ◽  
Ching Hsiu Tsai ◽  
Na Sheng Lin ◽  
Yau Heiu Hsu

Plant viruses may exhibit age-dependent tissue preference in their hosts but the underlying mechanisms are not well understood. In this study, we provide several lines of evidence to reveal the determining role of a protein of the Nicotiana benthamiana chloroplast Hsp70 (NbcpHsp70) family, NbcpHsp70-2, involved in the preference of Bamboo mosaic virus (BaMV) to infect older tissues. NbcpHsp70 family proteins were identified in complexes pulled down with BaMV replicase as the bait. Among the isoforms of NbcpHsp70, only the specific silencing of NbcpHsp70-2 resulted in the significant decrease of BaMV RNA in N. benthamiana protopalsts, indicating that NbcpHsp70-2 is involved in the efficient replication of BaMV RNA. We further identified the age-dependent import regulation signal contained in the transit peptide of NbcpHsp70-2. Deletion, overexpression, and substitution experiments revealed that the signal in the transit peptide of NbcpHsp70-2 is crucial for both the import of NbcpHsp70-2 into older chloroplasts and the preference of BaMV for infecting older leaves of N. benthamiana. Together, these data demonstrated that BaMV may exploit a cellular age-dependent transportation mechanism to target a suitable environment for viral replication.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Xinyan Gao ◽  
Yongfa Qiao ◽  
Baohui Jia ◽  
Xianghong Jing ◽  
Bin Cheng ◽  
...  

Previous studies have demonstrated the efficacy of electroacupuncture at ST36 for patients with gastrointestinal motility disorders. While several lines of evidence suggest that the effect may involve vagal reflex, the precise molecular mechanism underlying this process still remains unclear. Here we report that the intragastric pressure increase induced by low frequency electric stimulation at ST36 was blocked by AP-5, an antagonist of N-methyl-D-aspartate receptors (NMDARs). Indeed, stimulating ST36 enhanced NMDAR-mediated, but not 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic-acid-(AMPA-) receptor-(AMPAR-) mediated synaptic transmission in gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV). We also identified that suppression of presynapticμ-opioid receptors may contribute to upregulation of NMDAR-mediated synaptic transmission induced by electroacupuncture at ST36. Furthermore, we determined that the glutamate-receptor-2a-(NR2A-) containing NMDARs are essential for NMDAR-mediated enhancement of gastric motility caused by stimulating ST36. Taken together, our results reveal an important role of NMDA receptors in mediating enhancement of gastric motility induced by stimulating ST36.


2012 ◽  
Vol 23 (4) ◽  
pp. 687-700 ◽  
Author(s):  
Ryohei Suzuki ◽  
Junko Y. Toshima ◽  
Jiro Toshima

Clathrin-mediated endocytosis involves a coordinated series of molecular events regulated by interactions among a variety of proteins and lipids through specific domains. One such domain is the Eps15 homology (EH) domain, a highly conserved protein–protein interaction domain present in a number of proteins distributed from yeast to mammals. Several lines of evidence suggest that the yeast EH domain–containing proteins Pan1p, End3p, and Ede1p play important roles during endocytosis. Although genetic and cell-biological studies of these proteins suggested a role for the EH domains in clathrin-mediated endocytosis, it was unclear how they regulate clathrin coat assembly. To explore the role of the EH domain in yeast endocytosis, we mutated those of Pan1p, End3p, or Ede1p, respectively, and examined the effects of single, double, or triple mutation on clathrin coat assembly. We found that mutations of the EH domain caused a defect of cargo internalization and a delay of clathrin coat assembly but had no effect on assembly of the actin patch. We also demonstrated functional redundancy among the EH domains of Pan1p, End3p, and Ede1p for endocytosis. Of interest, the dynamics of several endocytic proteins were differentially affected by various EH domain mutations, suggesting functional diversity of each EH domain.


Sign in / Sign up

Export Citation Format

Share Document