Membrane Potentials in the Central Nervous System of a Phytophagous Insect (Carausius Morosus)

1967 ◽  
Vol 46 (3) ◽  
pp. 413-421
Author(s):  
J. E. TREHERNE ◽  
S. H. P. MADDRELL

1. The nerve cord of the stick insect is surrounded by a fat-body sheath. This sheath encloses an extraneural space and thus interposes an additional fluid compartment between the neural lamella and the haemolymph. The axons in the thoracic connectives were found to be relatively small, the largest ones averaging 7--II µ in diameter. 2. The apparent resting potentials of axons, impaled with glass capillary microelectrodes, were found to be relatively small, averaging only 25.1 mV., with an overshoot of 59.3 mV. in action potentials in intact preparations. In the absence of the neural fat-body sheath the resting potentials were increased to a mean value of 40.3 mV., there being no significant alteration in the total amplitude of the action potentials. This effect appears to result from the interpolation of a positive potential of some 15-20 mV. between the indifferent and recording electrodes. 3. The positive potential was abolished, in intact preparations, when the nerve cords were bathed with solutions of elevated chloride concentration. Positive potentials were also obtained when gradients of chloride ions were maintained across the isolated fatbody sheath. It is suggested that the positive potentials may result from a chloride diffusion potential across the neural fat-body sheath. 4. The results are discussed in relation to the ability of the axons of this species to function in ganglia and connectives bathed with solutions of low sodium concentration.

1972 ◽  
Vol 56 (1) ◽  
pp. 129-137
Author(s):  
J. E. TREHERNE

1. The effects of variation in the sodium concentration of the bathing media on axonal function has been measured in de-sheathed connectives in the presence of the overlying neural fat-body sheath. 2. The response to solutions of the same sodium concentration as the haemolymph (15 mM/1) was found to be essentially similar to that recorded in de-sheathed connectives in the absence of the fat-body sheath, there being a rapid decline in amplitude of the recorded action potentials in both preparations. 3. On the basis of these observations it is concluded that the neural fat-body sheath is unlikely to be involved in the regulation of the extra-neuronal sodium level.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5717
Author(s):  
Xiaokang Cheng ◽  
Jianxin Peng ◽  
C.S. Cai ◽  
Jianren Zhang

The existence of axial and lateral compressive stress affect the diffusion of chloride ions in concrete will lead to the performance degradation of concrete structure. This paper experimentally studied the chloride diffusivity properties of uniaxial and biaxial sustained compressive stress under one-dimensional chloride solution erosion. The influence of different sustained compressive stress states on chloride ion diffusivity is evaluated by testing chloride concentration in concrete. The experiment results show that the existence of sustained compressive stress does not always inhibit the diffusion of chloride ions in concrete, and the numerical value of sustained compressive stress level can affect the diffusion law of chloride ions in concrete. It is found that the chloride concentration decreases most when the lateral compressive stress level is close to 0.15 times the compressive strength of concrete. In addition, the sustained compressive stress has a significant effect on chloride ion diffusion of concrete with high water/cement ratio. Then, the chloride diffusion coefficient model under uniaxial and biaxial sustained compressive stress is established based on the apparent chloride diffusion coefficient. Finally, the results demonstrate that the chloride diffusion coefficient model is reasonable and feasible by comparing the experimental data in the opening literature with the calculated values from the developed model.


2016 ◽  
Vol 846 ◽  
pp. 245-250
Author(s):  
Qin Zhang ◽  
Li Guo ◽  
Xiao Ming Guo

Chloride penetration could lead to the rebar corrosion and cause the durability problem in concrete structure under marine environment. It is a coupling process between chloride penetrating and corrosion damage evolving in concrete. This paper proposed an analysis method to deal with this coupling problem. The corrosion damage degree was considered as an internal variable in coefficients of chloride diffusion. Additionally, the interfacial boundary displacement values varied with chloride concentration and service time of concrete structure. This iterative computing algorithm was tackled as user subroutine packaged into software ABAQUS. The numerical examples were given to confirm the reliability of the developed model. The results show that corrosion expanded damage accelerates chloride ions diffusion and vice versa.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 240
Author(s):  
Jianlan Chen ◽  
Jiandong Wang ◽  
Rui He ◽  
Huaizhu Shu ◽  
Chuanqing Fu

This study investigated the effective chloride diffusion coefficient of cement mortar with different water-to-cement ratio (w/c) under electrical accelerated migration measurement. The cumulative chloride concentration in anode cell solution and the cumulative chloride concentration drop in the cathode cell solution was measured by RCT measurement and the results were further used to calculate the chloride diffusion coefficient by Nordtest Build 355 method and Truc method. The influence of w/c on cement mortar’s chloride coefficient was investigated and the chloride diffusion coefficient under different determination methods were compared with other researchers’ work, a good consistency between this work’s results and literatures’ results was obtained. The results indicated that the increased w/c of cement mortar samples will have a higher chloride diffusion coefficient. The cumulative chloride concentration drop in the cathode cell solution will have deviation in early stage measurement (before 60 h) which will result in overestimation of the effective chloride diffusion coefficient.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3975
Author(s):  
Magdalena German ◽  
Jerzy Pamin

Reinforced concrete structures can be strongly damaged by chloride corrosion of reinforcement. Rust accumulated around rebars involves a volumetric expansion, causing cracking of the surrounding concrete. To simulate the corrosion progress, the initiation phase of the corrosion process is first examined, taking into account the phenomena of oxygen and chloride transport as well as the corrosion current flow. This makes it possible to estimate the mass of produced rust, whereby a corrosion level is defined. A combination of three numerical methods is used to solve the coupled problem. The example object of the research is a beam cross-section with four reinforcement bars. The proposed methodology allows one to predict evolving chloride concentration and time to reinforcement depassivation, depending on the reinforcement position and on the location of a point on the bar surface. Moreover, the dependence of the corrosion initiation time on the chloride diffusion coefficient, chloride threshold, and reinforcement cover thickness is examined.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2297
Author(s):  
Ayaz Ahmad ◽  
Furqan Farooq ◽  
Krzysztof Adam Ostrowski ◽  
Klaudia Śliwa-Wieczorek ◽  
Slawomir Czarnecki

Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experimental activities in laboratories might be a solution, they may also be problematic due to time and costs. Thus, the application of individual machine learning (ML) techniques has been investigated to predict surface chloride concentrations (Cc) in marine structures. For this purpose, the values of Cc in tidal, splash, and submerged zones were collected from an extensive literature survey and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the most accurate algorithm was then selected. The GEP model was the most accurate when compared to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an effective and accurate way to predict the surface chloride concentration without the inconveniences of laboratory tests.


1961 ◽  
Vol 38 (3) ◽  
pp. 521-530 ◽  
Author(s):  
D. W. SUTCLIFFE

1. Survival and regulation in sea-water media was studied in the freshwater caddises Limnephilus stigma and Anabolia nervosa. 2. The majority of larvae did not survive for more than a few days at external salt concentrations greater than about 6o mM./l. NaCl. 3. In sea-water media the haemolymph osmotic pressure increased to remain slightly hyper-osmotic to the medium. The haemolymph sodium level also increased to remain slightly hypertonic to the medium, but the chloride level was maintained hypotonic until just prior to death of the larvae. 4. When the haemolymph chloride concentration was raised above the normal level, the Malpighian tubule-rectal system elaborated fluid in which the chloride concentration was hypertonic to the haemolymph. The system is highly sensitive to changes in the haemolymph chloride level. 5. The regulation of body-fluid composition in the freshwater caddises is compared with that found previously in the euryhaline larvae of Limnephilus affinis. It is suggested that the maintenance of a low haemolymph sodium concentration in L. affinis larvae is an important part of the adaptation for survival in salt water.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yongchun Cheng ◽  
Yuwei Zhang ◽  
Chunli Wu ◽  
Yubo Jiao

A chloride ion is a key factor affecting durability of reinforced concrete (RC) structures. In order to investigate chloride migration in cracked concrete, considering the mesoscopic heterogeneity of concrete, concrete modeled here is treated as a four-phase composite consisting aggregate, mortar, crack, and interfacial transition zone (ITZ). In this paper, two-dimensional finite element models of cracked concrete with different crack widths and crack quantity are established and the control parameters are determined based on the nonsteady-state chloride migration (NSSCM) test. In addition, based on the concrete finite element models, influences of crack width, crack quantity, and erosion time on chloride migration behaviors and characteristics are studied. Furthermore, a prediction model of chloride concentration on the simulated surface of a rebar in concrete influenced by different crack states is established. This model is used to derive the corrosion current density and corrosion depth prediction models of a rebar in this paper, which can be used by engineers to estimate the migration behaviors of chloride and rebar corrosion degree in RC structures in a short time and evaluate the duration of RC structures after knowing the status of cracks and chloride diffusion sources.


2016 ◽  
Vol 711 ◽  
pp. 1061-1068
Author(s):  
Yang Zhou ◽  
Guo Dong Xu

Molecular Dynamics was employed to investigate the interaction of calcium silicate hydrate (C-S-H), the primary hydration product of cement based materials, and chloride, causing severe durable problems of concrete. The 11Å tobermorite structure was chosen to describe the C-S-H structure and the CLAYFF force field was used. It is observed in the simulation that there are no bound chlorides at 303K, while a fraction of chlorides appear in the adsorption district of tobermorite/solution interface at 323K indicating the temperature increase can improve chloride sorption capacity of C-S-H. The formation of Ca-Cl cluster is found on the surface of tobermorite, which is assumed to promote the chloride sorption. The experimental results of sorption isotherms of C-S-H in CaCl2 and NaCl aqueous solutions with the same chloride concentration have proved this point. Other researchers have made the same conclusion by means of molecular dynamics modeling, NMR tests or zeta potential experiments.


Sign in / Sign up

Export Citation Format

Share Document