Body Weight and the Energetics of Temperature Regulation

1970 ◽  
Vol 53 (2) ◽  
pp. 329-348 ◽  
Author(s):  
BRIAN K. McNAB

1. The interactions of basal rate of metabolism, thermal conductance, body temperature, lower limit of thermoneutrality, and body weight in mammals are compatible with Newton's law of cooling. 2. A small body weight will normally reduce the level and preciseness of body temperature, but a high basal rate of metabolism or a low thermal conductance may compensate for a small size and permit a high, precise temperature to be maintained. 3. The parameters of energetics that fix the level and preciseness of body temperature in mammals are ultimately correlated in turn with the environmental parameters of climate and food habits. 4. Birds generally have higher temperatures than mammals because the basal rates of metabolism are higher and the conductances lower in birds than in mammals of the same weight.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Sangho Yu ◽  
Helia Cheng ◽  
Marie François ◽  
Emily Qualls-Creekmore ◽  
Clara Huesing ◽  
...  

The adipokine leptin acts on the brain to regulate energy balance but specific functions in many brain areas remain poorly understood. Among these, the preoptic area (POA) is well known to regulate core body temperature by controlling brown fat thermogenesis, and we have previously shown that glutamatergic, long-form leptin receptor (Lepr)-expressing neurons in the POA are stimulated by warm ambient temperature and suppress energy expenditure and food intake. Here we further investigate the role of POA leptin signaling in body weight regulation and its relationship to body temperature regulation in mice. We show that POA Lepr signaling modulates energy expenditure in response to internal energy state, and thus contributes to body weight homeostasis. However, POA leptin signaling is not involved in ambient temperature-dependent metabolic adaptations. Our study reveals a novel cell population through which leptin regulates body weight.


1992 ◽  
Vol 40 (5) ◽  
pp. 523 ◽  
Author(s):  
PC Withers

The Barrow I. golden bandicoot (Isoodon auratus) is a small arid-adapted marsupial. It has a low and labile body temperature, a low basal metabolic rate, a low thermal conductance, and a low rate of evaporative water loss. Its metabolic, thermal and hygric physiology resembles that of another arid-adapted bandicoot, the bilby, and differs from temperate and tropical bandicoots.


2019 ◽  
Author(s):  
Brian K. McNab ◽  
Kerry Weston

ABSTRACTThe thermal physiology of the highly endangered Rock Wren (Xenicus gilviventris) from New Zealand is examined. It is a member of the Acanthisittidae, a family unique to New Zealand. This family, derived from Gondwana, is thought to be the sister taxon to all other passerines. Rock Wrens permanently reside above the climatic timberline at altitudes from 1,000 to 2,900 meters in the mountains of South Island. They feed on invertebrates and in winter face ambient temperatures well below freezing and deep deposits of snow. Their body temperature and rate of metabolism are highly variable. Rock Wrens regulate body temperature at ca. 36C, which in one individual decreased to 33.1C at an ambient temperature of 9.4C, which returned to 36C at 30.1C; its rate of metabolism decreased by 30%. The rate of metabolism in a second individual twice decreased by 35%, nearly to the basal rate expected from mass. The Rock Wren food habits, entrance into torpor, and continuous residence in a thermally demanding environment suggest that it may hibernate. For that conclusion to be accepted, evidence of its use of torpor for extended periods is required. Those data are not presently available. Acanthisittids are distinguished from other passerines by the combination of their temperate distribution, thermal flexibility, and a propensity to evolve a flightless condition. These characteristics may reflect their phylogenetic status, but they are so different from those found in other passerines that it is more likely that they reflect the geographical isolation of acanthisittids in a temperate environment for 85 million years in the absence of mammalian predators.


2020 ◽  
Vol 21 (2) ◽  
pp. 145
Author(s):  
Endah Setyaningsih ◽  
Tommy Tommy ◽  
Harlianto Tanudjaja

Baby incubator is very important to keep the newborn’s body temperature especially for premature babies. Premature babies is the babies that born less than 37 weeks and has less than 2500 grams body weight. Baby incubator is designed to have a lenght of 70 cm, a width of 40 cm, and a height of 60 cm. The system of baby incubator will automatically turn on or turn off the fan, heater or humidifier in accordance with the range of temperature and humidifier that has been set. The range of humidifier inside the baby incubator is 40% - 60%. The range of temperature can be set in a Graphical User Interface (GUI). At GUI, user can fill and show babies profile, babies activity, level of baby’s bilirubin, and the range of temperature. Those Datas are saved in a database’s tables. GUI can show the temperature and humidity of babies incubator in form of graph. Babies monitoring can be done by wireless. There is a monitoring device that can buzz if the baby is crying. This system has a database that can store incubator room temperature-humidity data, baby’s temperature, sound counters, biodata, activity, bilirubin and incubator temperature regulation. Can also provide information about the incubator's humidity and baby's temperature on the LCD and GUI and can save the record of the activities carried out by the baby, as well as keep a record of the baby's bilirubin value and turn on the lights automatically according to the bilirubin value inputABSTRAK:Inkubator bayi sangat berperan penting untuk menjaga suhu tubuh bayi baru lahir khususnya bagi bayi prematur. Bayi prematur adalah bayi yang lahir kurang dari 37 minggu dan memiliki berat badan kurang dari 2500 gram. Inkubator bayi yang dirancang memiliki ukuran ruang panjang 70 cm, lebar 40 cm, dan tinggi 60 cm. Sistem dari inkubator bayi ini akan secara otomatis menyalakan atau mematikan kipas, heater atau humidifier sesuai dengan batas suhu dan kelembaban yang telah diatur. Batas kelembaban udara di dalam inkubator bayi adalah sebesar 40% sampai 60%. Batas suhu inkubator bayi diatur sesuai dengan umur dan berat badan bayi. Pengaturan batas suhu inkubator bayi dapat diatur pada sebuah Graphical User Interface (GUI). Pada GUI, pengguna dapat mengisi dan menampilkan biodata bayi, aktivitas bayi, tingkat bilirubin bayi dan batas suhu inkubator yang diinginkan. Data-data tersebut disimpan pada tabel-tabel yang berada pada sebuah basis data. GUI juga dapat menampilkan suhu dan kelembaban inkubator bayi dalam bentuk grafik. Pemantauan bayi dapat dilakukan secara wireless. Terdapat sebuah alat pemantau yang akan berbunyi apabila bayi menangis. Sistem ini memiliki database yang dapat menyimpan data suhu-kelembaban ruang inkubator, suhu tubuh, counter suara, biodata, aktivitas, bilirubin dan pengaturan temperatur inkubator. Juga dapat memberikan informasi mengenai suhu-kelembaban inkubator dan suhu tubuh bayi pada LCD dan GUI dan dapat menyimpan record aktivitas yang dilakukan bayi, serta menyimpan record nilai bilirubin bayi dan menyalakan lampu secara otomatis sesuai dengan nilai bilirubin yang di­-input.


2020 ◽  
Author(s):  
Maria Stager ◽  
Nathan R. Senner ◽  
Bret W. Tobalske ◽  
Zachary A. Cheviron

ABSTRACTFlexibility in heat generation and dissipation mechanisms provides endotherms the ability to match their thermoregulatory strategy with external demands. However, the degree to which these two mechanisms account for seasonal changes in body temperature regulation is unexplored. Here we present novel data on the regulation of avian body temperature to investigate how birds alter mechanisms of heat production and heat conservation to deal with variation in ambient conditions. We subjected Dark-eyed Juncos (Junco hyemalis) to chronic cold acclimations of varying duration and subsequently quantified their metabolic rates, thermal conductance, and ability to maintain normothermia. Cold-acclimated birds adjusted traits related to both heat generation (increased summit metabolic rate) and heat conservation (decreased conductance) to improve their body temperature regulation. Increases in summit metabolic rate occurred rapidly, but plateaued after one week of cold exposure. In contrast, changes to conductance occurred only after nine weeks of cold exposure. Thus, the ability to maintain body temperature continued to improve throughout the experiment, but the mechanisms underlying this improvement changed through time. Our results demonstrate the ability of birds to adjust thermoregulatory strategies in response to thermal cues and reveal that birds may combine multiple responses to meet the specific demands of their environments.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2040
Author(s):  
Małgorzata Nadziakiewicz ◽  
Marcin Wojciech Lis ◽  
Piotr Micek

The aim of the study was to determine the effect of supplementing broiler chickens’ diets with halloysite on daily body weight gain (BWG), feed conversion ratio (FCR), daily water consumption (DWC), and some broiler house hygiene parameters. The trial was conducted on 18,000 broiler chickens divided into two groups throughout the 42-day (D) rearing period. The birds were fed complete diets without (group C) or with halloysite addition (1%, group E) from D8 of rearing. No difference in the mortality rate was observed between groups C and E. Birds from group E had a tendency (0.05 < p < 0.10) towards a higher body weight at D32 and D42, a higher BWG, and a lower FCR compared to group C during the entire rearing period. Average DWC differed only in the finisher period, with a tendency towards lower overall DWC in group E. The concentration of ammonia in the air from D21 to D35 was increased more than 5-fold in group C but only 1.5-fold in group E. In conclusion, the use of halloysite as a feed additive in the diet of broiler chickens resulted in a reduction in feed consumption per unit of BWG and higher utilisation of crude protein, which led to improved environmental conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Souravh Bais ◽  
Guru Sewak Singh ◽  
Ramica Sharma

In the present study, the methanolic extract of Moringa oleifera leaves (MEMOL) was evaluated for antiobesity activity in rats. The antiobesity potential of MEMOL was studied against high fat diet-induced obesity (HFD) in rats. In this study, chronic administration of HFD in rats produced hypercholesterolemia (116.2 ± 0.27 mg/dL), which led to an increase in the body weight (225 gr), total cholesterol, triglycerides (263.0 ± 4.69 mg/dL), and attenuation in the levels of HDL (34.51 ± 2.20 mg/dL) as well as changes in body temperature of animals. Treatment of obese rats with MEMOL for 49 days resulted in a significant (P<0.001) change in body weight, total cholesterol, triglycerides, and LDL level along with a significant (P<0.001) increase in body temperature as compared to the HFD-induced obesity. MEMOL treated rats also showed a significant decrease in the level of liver biomarkers, organ weight, and blood glucose level. Further, rats treated with MEMOL (200 mg and 400 mg/kg) show reduced atherogenic index (1.7 ± 0.6 and 0.87 ± 0.76). The results indicate that the rats treated with Moringa oleifera (MO) have significantly attenuated the body weight without any change in the feed intake and also elicited significant thermogenic effect and to act as hypolipidemic and thermogenic property in obesity related disorders.


Sign in / Sign up

Export Citation Format

Share Document