The elastic compensation method for limit and shakedown analysis: A review

2000 ◽  
Vol 35 (3) ◽  
pp. 171-188 ◽  
Author(s):  
D Mackenzie ◽  
J T Boyle ◽  
R Hamilton

A comprehensive review of the elastic compensation method for calculating limit and shakedown load bounds for complex structures is presented. The origins of the method in pressure vessel design by analysis is described and related methods for load and shakedown analysis considered, in particular Marriott's reduced modulus method, Seshadri's GLOSS r-node method and Ponter's modified elastic modulus method. The paper concludes with a recommendation for future work: development of an element level formulation of the method.

2016 ◽  
Vol 26 (03) ◽  
pp. 1730003 ◽  
Author(s):  
S. Balamurugan ◽  
P. S. Mallick

This paper provides a comprehensive review of various error compensation techniques for fixed-width multiplier design along with its applications. In this paper, we have studied different error compensation circuits and their complexities in the fixed-width multipliers. Further, we present the experimental results of error metrics, including normalized maximum absolute error [Formula: see text], normalized mean error [Formula: see text] and normalized mean-square error [Formula: see text] to evaluate the accuracy of fixed-width multipliers. This survey is intended to serve as a suitable guideline and reference for future work in fixed-width multiplier design and its related research.


2016 ◽  
Vol 56 (2) ◽  
pp. 591
Author(s):  
Lidena Carr ◽  
Russell Korsch ◽  
Tehani Palu

Following the publication of Geoscience Australia Record 2014/09: Petroleum geology inventory of Australia’s offshore frontier basins by Totterdell et al (2014), the onshore petroleum section of Geoscience Australia embarked on a similar project for the onshore Australian basins. Volume I of this publication series contains inventories of the McArthur, South Nicholson, Georgina, Amadeus, Warburton, Wiso, Galilee, and Cooper basins. A comprehensive review of the geology, petroleum systems, exploration status, and data coverage for these eight Australian onshore basins was conducted, based on the results of Geoscience Australia’s precompetitive data programs, industry exploration results, and the geoscience literature. A petroleum prospectivity ranking was assigned to each basin, based on evidence for the existence of an active petroleum system. The availability of data and level of knowledge in each area was reflected in a confidence rating for that ranking. This extended abstract summarises the rankings assigned to each of these eight basins, and describes the type of information available for each of these basins in the publically available report by Carr et al (2016), available on the Geoscience Australia website. The record allocated a high prospectivity rating for the Amadeus and Cooper basins, a moderate rating for the Galilee, McArthur and Georgina basins, and a low rating for the South Nicholson, Warburton and Wiso basins. The record lists how best to access data for each basin, provides an assessment of issues and unanswered questions, and recommends future work directions to lessen the risk of these basins in terms of their petroleum prospectivity. Work is in progress to compile inventories on the next series of onshore basins.


2001 ◽  
Vol 2001.14 (0) ◽  
pp. 49-50
Author(s):  
Takuji AKIYAMA ◽  
Isoharu NISHIGUCHI ◽  
Masataka SASAKI

2021 ◽  
Vol 11 (21) ◽  
pp. 9812
Author(s):  
Norziana Jamil ◽  
Qais Saif Qassim ◽  
Farah Aqilah Bohani ◽  
Muhamad Mansor ◽  
Vigna Kumaran Ramachandaramurthy

The infrastructure of and processes involved in a microgrid electrical system require advanced technology to facilitate connection among its various components in order to provide the intelligence and automation that can benefit users. As a consequence, the microgrid has vulnerabilities that can expose it to a wide range of attacks. If they are not adequately addressed, these vulnerabilities may have a destructive impact on a country’s critical infrastructure and economy. While the impact of exploiting vulnerabilities in them is understood, research on the cybersecurity of microgrids is inadequate. This paper provides a comprehensive review of microgrid cybersecurity. In particular, it (1) reviews the state-of-the-art microgrid electrical systems, communication protocols, standards, and vulnerabilities while highlighting prevalent solutions to cybersecurity-related issues in them; (2) provides recommendations to enhance the security of these systems by segregating layers of the microgrid, and (3) identifies the gap in research in the area, and suggests directions for future work to enhance the cybersecurity of microgrids.


2021 ◽  
Author(s):  
Olivia Foster Vander Elst ◽  
Peter Vuust ◽  
Morten L. Kringelbach ◽  
Nicholas HD Foster

Ancient and culturally universal, dance is important in many areas of life and brings pleasure, motivational, and health benefits. This is the first comprehensive review of research into its neuroscientific aspects. To produce it, we devised a map of the field, identified relevant papers using the PRISMA guidelines, then summarised and evaluated the results of those papers. We also suggest avenues for future research in: the interactive and collective aspects of dance; groove; dance performance; dance observation; and dance therapy. The interactive and collective aspects of dance constitute a vital part of the field, but have received almost no attention to date. More research has been conducted in the other areas, but they would benefit from additional attention.


2010 ◽  
Vol 434-435 ◽  
pp. 205-208
Author(s):  
Yi Wang Bao ◽  
De Tian Wan ◽  
Yan Qiu

Mechanical properties of ceramics are important for its engineering application. It would be significant and efficient if some properties could be estimated without tests. Energy dissipation capacity of ceramics is estimated in this work via two common parameters, hardness and elastic modulus, which could be obtained from basic data of commercial ceramics or simple tests. The ratio of hardness to reduced modulus H/Er is found to be related to recovery resistance and energy dissipation capacity of the materials, and the related equations were induced. The reduced modulus can be expressed by conventional elastic modulus E. Thus, the capacity of energy dissipation and elastic recovery can be estimated simply from the H/E ratio. The calculated results indicate that the value of H/E ratio is in reverse proportion to the energy dissipation. Several ceramics with different H/E ratio are analyzed and their energy dissipation capacities are estimated.


2011 ◽  
Vol 291-294 ◽  
pp. 3088-3094
Author(s):  
Jin Hui Liu ◽  
Wen Juan Xie ◽  
Qing Song Wei ◽  
Li Wang

Pores are always considered as a kind of defect during manufacturing metal parts via many conventional processes. But porous metals have outstanding physical and mechanical properties which providing them double natures of function and structure, and are applied in many fields of science and technology. Selective laser melting (SLM), developed within current years, has the advantages of producing metal parts with complex structures, and can be used to manufacture complex structures of any kind theoretically. A new method of making porous complicated metal structures via SLM is put forward. Then, the meaning of this method, research advance and future work discussion are presented in this paper, which lays a method foundation for future study and build a new field for both porous metal parts and SLM technology.


Sign in / Sign up

Export Citation Format

Share Document