Shear stress tracking control of an electrorheological fluid considering hysteresis non-linearity

Author(s):  
Y M Han ◽  
S B Choi

This paper presents shear stress tracking control of an electrorheological (ER) fluid actuator subjected to the hysteresis non-linearity. As a first step, polymethylaniline (PMA) particles are prepared and mixed with silicone oil to make an ER fluid. The Couette-type electroviscometer is employed to achieve the field-dependent shear stress. The Preisach model for the PMA-based ER fluid is identified using experimental first-order descending (FOD) curves. A compensation strategy is then formulated in a discrete manner through the Preisach model inversion to achieve the desired shear stress of the ER fluid. A proportional-intergal-derivative (PID) feedback controller is also integrated with the compensator in order to guarantee control robustness to uncertainty due to temperature-dependent hysteresis variation. The tracking performance of the control strategy is experimentally evaluated for two different desired shear stress trajectories.

2005 ◽  
Vol 19 (07n09) ◽  
pp. 1325-1331 ◽  
Author(s):  
Y. M. HAN ◽  
S. B. CHOI ◽  
H. J. CHOI

This paper presents a new approach for hysteresis modeling of an electro-rheological (ER) fluid. The Preisach model is adopted to describe change of an ER fluid hysteresis with temperature, and its applicability is experimentally proved by examining two significant properties under two dominant temperature conditions. As a first step, the polymethylaniline (PMA)-based ER fluid is made by dispersing the chemically synthesized PMA particles into non-conducting oil. Then, using the Couette type electroviscometer, multiple first order descending (FOD) curves are constructed to consider temperature variations in the model. Subsequently, a nonlinear hysteresis model of the ER fluid is formulated between input (electric field) and output (yield stress). A compensation strategy is also formulated in a discrete manner through the Preisach model inversion to attain desired shear stress of the ER fluid. In order to demonstrate the effectiveness of the identified hysteresis model and the tracking performance of the control strategy, the field-dependent hysteresis loop and tracking error responses are experimentally evaluated in time domain and compared with responses obtained from Bingham model.


1994 ◽  
Vol 08 (25) ◽  
pp. 1563-1575 ◽  
Author(s):  
KIYOHITO KOYAMA ◽  
KEIJI MINAGAWA ◽  
TAMOTSU YOSHIDA ◽  
NORIYUKI KURAMOTO ◽  
KATSUFUMI TANAKA

Electrorheological behaviors of polyaniline/silicone oil suspension were observed by using a modified Couette type rheometer with high resolution for shear stress. The yield behaviors were examined over a wide range of shear strain. The storage modulus and loss tangent were determined under a constant dc electric field. It was clarified that the polyaniline-based ER fluid yields two different strain amplitudes, i.e. about 1% and 50%. The stress-strain curves obtained from shear flow experiments also suggested the existence of two-step yield process. The yield process was found to be dependent on the electric field strength and the particle concentration in different manners. The yield behavior observed is discussed in relation to the structure of particle clusters which causes the ER effect.


2002 ◽  
Vol 16 (17n18) ◽  
pp. 2521-2527 ◽  
Author(s):  
JUN LU ◽  
XIAOPENG ZHAO

Polyanilline-montmorillonite nanocomposite (PANI-MMT) particles were synthesized by an emulsion intercalation method and characterized by IR, XRD and TEM spectrometry. TEM showed that the particle's size of MMT-PANI particles was about 100 mm. The dielectric constant of PANI-MMT nanocomposite was increased 2.4 times than that of MMT and 7 times than PANI, the conductivity of PANI-MMT particles was increased was increased 10 times than that of MMT. Meanwhile, the dielectric loss tangent was also increased about 1.36 times than that of PANI. The electrorheological behaviors of the suspensions of PANI-MMT nanocomposite in silicone oil with a 30% weight fraction were investigated under DC electric fields. In 3 kV/mm DC field at room temperature, the yield stress was 8.26 kPa (shear 5 s -1). In 4 kV/mm DC field, the shear strength was 8.30 kPa (γ = 103.1 s -1, T = 20°C), and much higher than that of pure polyaniline (PANI), montmorillonite (MMT) and mixture of polyaniline with clay (MMT + PANI). The sedimentation experiment showed that the PANI-MMT nanocomposite particles did not deposit during about two months. The relevant influential factors between shear stress and electric fields, between shear stress and shear rate, between shear stress and temperature was also discussed preliminarily. The results showed that the MMT-PANI ER fluid displays a notable ER effect under DC electric field.


2012 ◽  
Vol 26 (14) ◽  
pp. 1250081 ◽  
Author(s):  
GLAUBER M. S. LUZ ◽  
ANTONIO J. F. BOMBARD ◽  
SILVIO L. M. BRITO ◽  
DOUGLAS GOUVÊA ◽  
SHEILA L. VIEIRA

Electrorheology (ER) of ferroelectric materials such as nanometric BaTiO 3 is still not fully understood. In this paper, nanoparticles of Ba x Sr (1-x) TiO 3 (where x = 0.8, 0.9 or 1.0) were synthesized using the method of Pechini, calcinated at 950°C, and after, lixiviated under pH 1 or pH 5. A controlled stress rheometer (MCR-301) was used to make the ER characterization of dispersions made of Ba x Ti 1-x O 3 in silicone oil (30% w/w), where (a) shear stress as a function of DC electric field (under constant shear rate) or (b) shear stress as a function of shear rate (under constant AC or DC electric field) were measured. We observed that electrophoresis occurred under electric field DC, creating a concentration gradient which induced phase separation in ER fluid. On the other hand, under AC fields above 1 kV/mm, the ER effect is stronger than for DC field, and almost without electrophoresis. Furthermore, there is an AC frequency, dependent on the disperse phase, where the ER effect has a maximum.


2002 ◽  
Vol 16 (17n18) ◽  
pp. 2371-2377 ◽  
Author(s):  
X. P. ZHAO ◽  
J. B. YIN ◽  
L. Q. XIANG ◽  
Q. ZHAO

This paper describes a new class of water-free electrorheological (ER) fluids based on nonaqueous doped TiO 2 with rare earth (RE) in silicone oil. The thermal character and crystal structure of these materials are investigated with DSC, TG and XRD. The doped TiO 2 crystals possess anatase phase and their lattice spacing varies significantly with the content of rare earth. The rheological measurements show that the doped TiO 2 ER fluid exhibits an obviously higher shear stress than that of pure TiO 2 ER fluid under dc electric field. Especially, substitution with 10mol% cerium or 8mol% lanthanum for Ti can obtain a relatively high shear stress. On the basis of dielectric and conduction measurements, we preliminarily discuss the influence of the doping of rare earth on ER effects of TiO 2.


2011 ◽  
Vol 110-116 ◽  
pp. 1099-1106
Author(s):  
Yun Wei Zhao ◽  
De Xu Geng ◽  
Xiao Min Iu ◽  
Jin Tao Zhang

Electrorheological (ER) fluid-assisted polishing process is the ultra precision finishing technologies for micro-aspherical lenses and dies. The principle of ER fluid-assisted polishing (ERP) is to use ER effect as a result of the application of electric field. The ER particles and abrasive particles suspended in silicone oil are polarized in which ER particles strongly attract each other and aggregate into chain like structure along the electric field lines, and the abrasive particles may adhere to the ER chain. The force acting on ER particles and abrasive particles in an electric field is calculated. Furthermore, experiments of polishing optical glass with Al2O3 are carried out to find the influential regularities of polishing time, rotational speed of micro-tool, voltage, the density of abrasives in ER fluid on the surface roughness.


1999 ◽  
Vol 13 (14n16) ◽  
pp. 1845-1851 ◽  
Author(s):  
F. Ikazaki ◽  
A. Kawai ◽  
T. Kawakami ◽  
M. Konishi ◽  
Y. Asako

Effects of particle concentration, water content and temperature on the electrorheology of suspensions of highly sulfonated styrene-co-divinylbenzene (SSD) particles in a silicone oil were investigated. The induced shear stress was measured with a modified rotary rheometer. The electrorheology of the suspension was largely affected by the particle concentration, the water content and the measurement temperature. The induced shear stress for the particle concentration of 40 wt% was about twice as large as that of 20 wt%. The induced shear stress for the water content of 4 wt% was about twice as large as that of 2 wt%. The induced shear stress for the temperature of 80°C was about 15 times as large as that of 20°C. Dielectric properties were measured to elucidate the mechanism of electrorheology. In order for an ER fluid to have large ER effect, relaxation frequency of the ER fluid should be between 100 and 105 Hz and the difference of the dielectric constant below and above the relaxation frequency (Δ∊′) must be large, which we refer to as the dielectric property mechanism. The relation between measured ER effect and dielectric property mechanism was discussed.


1999 ◽  
Vol 13 (14n16) ◽  
pp. 1901-1907 ◽  
Author(s):  
Hyoung J. Choi ◽  
Min S. Cho ◽  
Myung S. Jhon

As a potential electrorheological(ER) material, poly(naphthalene quinone) radical (PNQR) ER fluid was prepared, and its rheological behavior and hysteresis phenomenon were investigated. PNQR was synthesized by Friedel-Crafts acylation between naphthalene and phthalic anhydride, using zinc chloride as a catalyst at 256°C. A Physica rheometer equipped with a high voltage generator was used to measure the rheological properties of the ER fluids, which were prepared by dispersing PNQR in silicone oil at several particle concentrations. Shear stresses were observed to decrease as shear rate increased in the region of slow deformation rate. It was further found that ER fluid showed different hysteresis behaviors according to the shear rate ranges; thixotropy was observed in the low shear rate region (0.007-0.51/s) and anti-thixotropy in the high shear rate region (0.5-10001/s). Controlled shear stress mode was also applied to observe similar behaviors.


Author(s):  
Ken’ichi Koyanagi ◽  
Xu Wang ◽  
Tomoaki Karaki

This paper describes experimental trials that were performed to increase the electrorheological (ER) effect in ER fluids (ERFs) by introducing piezoelectric particles (PEPs). Five sample solutions were made using different PEPs, ER powders, and liquids that included ERFs provided with different solutions and silicone oil. The shear stress of each sample was measured by shearing the sample between parallel plate electrodes. Samples containing the PEP showed the same shear stress under steady voltage inputs but showed somewhat higher shear stress under sinusoidal voltage inputs. This suggests that mixtures of the piezoelectric powders (at approximately 5 wt.%) and the ERF may shorten the response time of the ERF to DC inputs or increase the response frequency to AC inputs.


2001 ◽  
Vol 15 (06n07) ◽  
pp. 938-946 ◽  
Author(s):  
Kunquan Lu ◽  
Yucheng Lan ◽  
Shouqiang Men ◽  
Xiaoyu Xu ◽  
Zhao Xianpeng ◽  
...  

By measuring the shear stress of a ferroelectric particle/silicone oil ER fluid varying with the temperature across Tc, the dependence of ER effect on permittivity mismatch is quantitatively obtained. The dielectric property of ferroelectric material behaves a dramatic change at Curie temperature (Tc) either in the dielectric constant and the conductivity. TGS and KNO 3 ferroelectric particles are chosen for studying the dielectric constant and conductivity dependence of the shear stress in ER fluids respectively. The measured results are more reliable, because the conditions, such as size, shape, composition of particles, especially chemical nature of particles and interface property between particles and liquid, all are same. The available theoretical calculations can not well fit our measured results. In order to consider the properties of whole suspensions, the orientation of the particles with spontaneous polarization under an electric field was studied in advance.


Sign in / Sign up

Export Citation Format

Share Document