Flow characteristics of curing polymethyl methacrylate bone cement

Author(s):  
N J Dunne ◽  
J F Orr

During polymerization, polymethyl methacrylate bone cements have complex viscoelastic characteristics. Within a short working time they transform from dough-like consistencies to solid cements. Therefore, the time at which a cement is introduced to cancellous bone surfaces and subjected to pressure is important, to achieve optimum flow and mechanical interdigitation. Achieving adequate mechanical interlock increases the area for load transfer and reduces localized bone-cement interface stresses. The aim of this study was to measure the flow characteristics for commercial bone cements as a function of time and calculate the apparent viscosities for the curing bone cements The capillary extrusion method was used to measure the rate of flow of the curing cement, by means of a melt flow index apparatus, which was manufactured in-house. The tests were conducted using nozzles of different lengths and under two loads. This enabled the power index value, n, and the pressure at the die entry, Po, to be calculated for each material with respect to time. Once the flow characteristics were determined, a series of formulae were used to calculate the shear rates, y, the shear stresses, r, and the apparent viscosities, na, of the curing bone cements. The results indicated that acrylic bone cements are non-Newtonian, pseudoplastic materials, since the power index values are less than 1.0 during the curing stage. The consistency indices, K, were calculated from the shear stress versus shear rate data. The apparent viscosities of the cements were found to increase with respect to increases in time. Clinically, it was considered desirable to inject and pressurize the cement into the medullary canal while its viscosity is relatively low in order to obtain maximum interdigitation into cancellous bone, provided adequate containment and a means of pressurization can be achieved. The pseudoplastic character of bone cements is responsible for their reduction in viscosity with increased shear rate, a property that may be exploited to enhance penetration with appropriate delivery.

2011 ◽  
Vol 11 (01) ◽  
pp. 55-72 ◽  
Author(s):  
DESMOND Y. R. CHONG ◽  
ULRICH N. HANSEN ◽  
ANDREW A. AMIS

Aseptic loosening caused by mechanical factors is a recognized failure mode for tibial components of knee prostheses. This parametric study investigated the effects of prosthesis fixation design changes, which included the presence, length and diameter of a central stem, the use of fixation pegs beneath the tray, all-polyethylene versus metal-backed tray, prosthesis material stiffness, and cement mantle thickness. The cancellous bone compressive stresses and bone–cement interfacial shear stresses, plus the reduction of strain energy density in the epiphyseal cancellous bone, an indication of the likelihood of component loosening, and bone resorption secondary to stress shielding, were examined. Design features such as longer stems reduced bone and bone–cement interfacial stresses thus the risk of loosening is potentially minimized, but at the expense of an increased tendency for bone resorption. The conflicting trend suggested that bone quality and fixation stability have to be considered mutually for the optimization of prosthesis designs. By comparing the bone stresses and bone–cement shear stresses to reported fatigue strength, it was noted that fatigue of both the cancellous bone and bone–cement interface could be the driving factor for long-term aseptic loosening for metal-backed tibial trays.


1982 ◽  
Vol 104 (1) ◽  
pp. 28-37 ◽  
Author(s):  
A. M. Ahmed ◽  
R. Nair ◽  
D. L. Burke ◽  
J. Miller

In this second part of a two-part report, an idealized model of the stem fixation system is analyzed to determine the adverse effects of the thermal stresses and displacements of bone cement during its curing process. The Shaffer-Levitsky stress-rate strain-rate law for chemically hardening material has been used. The results show that if the cement is surrounded by cancellous bone, as opposed to cortical bone, then transient tensile circumferential stresses in the cement and similar radial stresses at the stem/cement interface are generated. The former may cause flaws and voids within the still curing cement, while the latter may cause gaps at the interface.


Author(s):  
N. Nun˜o

Implant looseining of cemented hip implants is one of the major causes of failure of the arthroplasty. In cemented hip implants, the polymethyl methacrylate (PMMA), also called bone cement, is used as grouting material between the stem and the surrounding bone. During polymerisation of the cement, residual stresses are generated in the bulk cement. The bone cement does not have a chemical bond with the stem nor the bone; however, it fills completely the space between the two and serves to distribute the load being transferred from the stem to the bone. Numerical analyses on the load transfer of cemented hip implants usually do not include the residual stresses due to cement curing at the stem-cement interface [1–2].


Author(s):  
Jennifer R. Melander ◽  
Rachel A. Weiler ◽  
Bradley D. Miller ◽  
Kathleen V. Kilway ◽  
J. David Eick

There has been little change in the formulation of bone cements since Sir John Charnley first developed them in the 1970s. Bone cements are methacrylate based systems packaged in two components [1]. The powder component contains a mixture of polymethyl methacrylate (PMMA), methyl methacrylate-styrene-copolymer, and a radio opacifier (either barium sulfate or zirconium oxide) [2]. The second component is a liquid monomer typically containing methyl methacrylate, N, N-dimethyl-p-toluidine (activator), and hydroquinone. Flexural strength and flexural modulus of bone cements range between 60–75 MPa and 2.2–3.3 GPa, respectively [3, 4]. ISO 5833 requires bone cements to have a strength greater than 50 MPa and a modulus greater than 1.8 GPa [5].


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2964 ◽  
Author(s):  
Magda Dziaduszewska ◽  
Marcin Wekwejt ◽  
Michał Bartmański ◽  
Anna Pałubicka ◽  
Grzegorz Gajowiec ◽  
...  

Spacers, in terms of instruments used in revision surgery for the local treatment of postoperative infection, are usually made of metal rod covered by antibiotic-loaded bone cement. One of the main limitations of this temporary implant is the debonding effect of metal–bone cement interface, leading to aseptic loosening. Material selection, as well as surface treatment, should be evaluated in order to minimize the risk of fraction and improve the implant-cement fixation the appropriate manufacturing. In this study, Ti13Zr13Nb alloys that were prepared by Selective Laser Melting and surface treated were coated with bone cement loaded with either gentamicin or nanosilver, and the effects of such alloy modifications were investigated. The SLM-made specimens of Ti13Zr13Nb were surface treated by sandblasting, etching, or grounding. For each treatment, Scanning Electron Microscope (SEM), contact profilometer, optical tensiometer, and nano-test technique carried out microstructure characterization and surface analysis. The three types of bone cement i.e., pure, containing gentamicin and doped with nanosilver were applied to alloy surfaces and assessed for cement cohesion and its adhesion to the surface by nanoscratch test and pull-off. Next, the inhibition of bacterial growth and cytocompatibility of specimens were investigated by the Bauer-Kirby test and MTS assay respectively. The results of each test were compared to the two control groups, consisting of commercially available Ti13Zr13Nb and untreated SLM-made specimens. The highest adhesion bone cement to the titanium alloy was obtained for specimens with high nanohardness and roughness. However, no explicit relation of adhesion strength with wettability and surface energy of alloy was observed. Sandblasting or etching were the best alloys treatments in terms of the adhesion of either pure or modified bone cements. Antibacterial additives for bone cement affected its properties. Gentamicin and nanosilver allowed for adequate anti-bacterial protection while maintaining the overall biocompatibility of obtained spacers. However, they had different effects on the cement’s adhesive capacity or its own cohesion. Furthermore, the addition of silver nanoparticles improved the nanomechanical properties of bone cements. Surface treatment and method of fabrication of titanium affected surface parameters that had a significant impact on cement-titanium fixation.


1985 ◽  
Vol 55 ◽  
Author(s):  
Alan S. Litsky ◽  
Robert M. Rose ◽  
Clinton T. Rubin

ABSTRACTLoosening is the dominant long-term problem facing joint replacement surgeons and patients. A probable cause of endoprosthesis loosening is the strain singularity at the material interfaces. The concentration of shear at the bone-cement interface leads to micromotion which precipitates a soft-tissue membrane and resorption of the cancellous bone.A more compliant cement would substantially reduce the interfacial stresses and serve as a “pillow” between the prosthetic stem and the cancellous bone. We have developed a surgically-workable formulation of a reduced modulus acrylic bone cement — polybutylmethylmethacrylate (PBMMA) — to test this hypothesis. Materials property testing and in vivo implantation are discussed.


1990 ◽  
Vol 63 (4) ◽  
pp. 540-553 ◽  
Author(s):  
Kenneth P. Beardsley ◽  
Richard W. Tomlinson

Abstract We have shown that the rate of mixing oil and carbon black with EPDM polymers having the same Mooney viscosity is dependent on their molecular-weight distribution and degree of branching. Samples having broad molecular-weight distributions mix more slowly than samples with more narrow distributions, and branched samples mix more slowly than corresponding linear samples. The slower mixing of samples that are branched or broad in molecular-weight distribution is a consequence of their more elastic character. These samples tend to be more non-Newtonian in their flow characteristics and thus have high viscosities at low shear rate and low viscosities at high shear rate. They also drop more in viscosity on mixing with oil. These factors cause these polymers to wet the carbon black more slowly and to have lower shear stresses during the mixing, leading to slower mixing.


1985 ◽  
Vol 107 (2) ◽  
pp. 175-182 ◽  
Author(s):  
J. P. Clech ◽  
L. M. Keer ◽  
J. L. Lewis

This paper gives an insight about compression and tension cracks as encountered at a bone-cement interface. Within the context of continuum theory of fracture, an analytical solution is presented for the problem of a bimaterial interface edge crack under uniaxial tension or compression, assuming no tangential slip along the crack faces since cement pedicles penetrate into the cancellous bone several millimeters. Also essential to the solution are cohesive zone effects that account for a strengthening mechanism over the crack faces. The solution provides a methodological framework for quantifying the influence of the cohesive zone on the magnitude of the stress singularity. Mode I crack tip stress intensity factors are calculated at different stages of the loading and unloading phases under uniaxial tension or compression. Finally, an inelastic mechanism is presented that gives theoretical support to explain the formation of interfacial compression cracks, a phenomenon that was not previously appreciated and that arises from the rigid cement being forced into the more compliant cancellous bone.


2021 ◽  
Vol 10 (22) ◽  
pp. 5361
Author(s):  
Kevin Knappe ◽  
Christian Stadler ◽  
Moritz M. Innmann ◽  
Mareike Schonhoff ◽  
Tobias Gotterbarm ◽  
...  

The modern cementing technique in cemented arthroplasty is a highly standardized and, therefore, safe procedure. Nevertheless, aseptic loosening is still the main reason for revision after cemented total knee or cemented total hip arthroplasty. To investigate whether an additional carbon dioxide lavage after a high-pressure pulsatile saline lavage has a positive effect on the bone–cement interface or cement penetration, we set up a standardized laboratory experiment with 28 human femoral heads. After a standardized cleaning procedure, the test implants were cemented onto the cancellous bone. Subsequently, the maximum failure load of the bone–cement interface was determined using a material testing machine to pull off the implant, and the cement penetration was determined using computed tomography. Neither the maximum failure load nor cement penetration into the cancellous bone revealed significant differences between the groups. In conclusion, according to our experiments, the additive use of the carbon dioxide lavage after the high-pressure pulsatile lavage has no additional benefit for the cleaning of the cancellous bone and, therefore, cannot be recommended without restrictions.


Sign in / Sign up

Export Citation Format

Share Document