Workpiece Deflection Compensation Using a Two-Dimensional Toolposts

Author(s):  
W Y Yan ◽  
A M Al-Jumaily

Considering the workpiece elastic deflection in a turning process, a simulation model that accounts for the radial and tangential vibrations and their abatement using active control is developed. The model is simulated using Simulink in a Matlab environment to assess the possibility of using an active actuator to reduce vibrations in two directions. The results demonstrate the significance of the workpiece elastic deformation and its compensation using active actuators. Actuators that can compensate for the piece deflection and the vibrations due to the surface roughness are speculated upon.

2002 ◽  
Author(s):  
W. Y. Yan ◽  
A. M. Al-Jumaily

Considering the workpiece elastic deflection in a turning process, a simulation model that accounts for the radial and tangential vibrations and their abatement using active control is developed. The model is simulated using Simulink in a Matlab environment to assess the possibility of using an active actuator to reduce vibrations in two directions. The results demonstrate the significance of the workpiece elastic deformation and its compensation using active actuators. Actuators that can compensate for the piece deflection and the vibrations due to the surface roughness are speculated on.


Author(s):  
W Y Yan ◽  
A M Al-Jumaily

This paper presents a simulation model that considers the radial and tangential vibrations and their abatement using active actuators in a turning process. The model is simulated using Simulink in a MATLAB environment to assess the possibility of using an active actuator to reduce vibrations in two directions. Comparison is made between the two orthogonal actuators scenario and the one inclined actuator scenario. The results indicate that vibration reduction using an active inclined actuator is comparable with that using two orthogonal actuators.


Author(s):  
Salman Khani ◽  
Seyedhamidreza Shahabi Haghighi ◽  
Mohammad Reza Razfar ◽  
Masoud Farahnakian

In this paper, the thread turning of aluminum 7075-T6 alloy is studied using micro-hole textured solid-lubricant embedded carbide inserts. The primary focus of this work is to enhance the performance of the thread turning process for producing high quality threaded parts. To achieve this, micro-holes were generated by laser micro-machining on the rake face of tools and then, MoS2 and CNT (carbon nanotube) solid-lubricants were embedded into micro-holes. The effects of micro-holes and solid-lubrication on the performance of the thread turning process were examined using traditional tool ( T0), micro-hole textured tool ( T1), micro-hole textured MoS2 embedded tool ( T2), and micro-hole textured CNT embedded tool ( T3). In this study, cutting forces, chip-tool contact length, built-up edge (BUE), surface roughness, and operating cost were investigated. The influence of micro-hole generation on the mechanical strength of cutting inserts was evaluated using the finite element method. The results showed that the fabrication of the micro-holes on the rake surface of cutting inserts has no significant effect on the mechanical strength of the tools. The comparisons of our method with traditional tools demonstrated that the cutting performance improved in the threading process. Our results reveal that the main cutting force, radial thrust force, surface roughness, built-up edge, and chip-tool contact length reduced 37.1%, 40.9%, 37.9%, 58.3%, and 38.2%, respectively, as T3 tools are applied in this process. A cost analysis, based on estimated tooling costs, showed that the T3 tool can yield an 18% reduction in overall operating cost.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Zhenyu Zhou ◽  
Qiuyang Zheng ◽  
Cong Ding ◽  
Guanglei Yu ◽  
Guangjian Peng ◽  
...  

AbstractA novel two-dimensional ultrasonic surface burnishing process (2D-USBP) is proposed. 7075-T6 aluminum samples are processed by a custom-designed 2D-USBP setup. Parameter optimization of 2D-USBP is conducted to determine the best processing strategy of 7075-T6 aluminum. A uniform design method is utilized to optimize the 2D-USBP process. U13(133) and U7(72) tables are established to conduct parameter optimization. Burnishing depth, spindle speed, and feed rate are taken as the control parameters. The surface roughness and Vickers hardness are taken as the evaluation indicators. It establishes the active control models for surface quality. Dry wear tests are conducted to compare the wear-resistance of the 2D-USBP treated sample and the original sample. Results show that the machining quality of 2D-USBP is best under 0.24 mm burnishing depth, 5000 r/min spindle speed, and 25 mm/min feed rate. The surface roughness Sa of the sample is reduced from 2517.758 to 50.878 nm, and the hardness of the sample surface is improved from 167 to 252 HV. Under the lower load, the wear mechanism of the 2D-USBP treated sample is mainly abrasive wear accompanied by delamination wear, while the wear mechanism of the original sample is mainly delamination wear. Under the higher load, the accumulation of frictional heat on the sample surface transforms the wear mechanisms of the original and the 2D-USBP treated samples into thermal wear.


2001 ◽  
Vol 432 ◽  
pp. 69-90 ◽  
Author(s):  
RUDOLPH A. KING ◽  
KENNETH S. BREUER

An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional and oblique (three-dimensional) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well-defined wavenumber spectrum with fundamental wavenumber kw. A planar downstream-travelling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to kts = kw. The range of acoustic forcing levels, ε, and roughness heights, Δh, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination εΔh resulted in subsequent nonlinear development of the Tollmien–Schlichting (T–S) wave. This study provides the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the two-dimensional and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber αw and measuring the T–S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.


A two-dimensional homogeneous random surface { y ( X )} is generated from another such surface { z ( X )} by a process of smoothing represented by y ( X ) = ∫ ∞ d u w ( u – X ) z ( u ), where w ( X ) is a deterministic weighting function satisfying certain conditions. The two-dimensional autocorrelation and spectral density functions of the smoothed surface { y ( X )} are calculated in terms of the corresponding functions of the reference surface { z ( X )} and the properties of the ‘footprint’ of the contact w ( X ). When the surfaces are Gaussian, the statistical properties of their peaks and summits are given by the continuous theory of surface roughness. If only sampled values of the surface height are available, there is a corresponding discrete theory. Provided that the discrete sampling interval is small enough, profile statistics calculated by the discrete theory should approach asymptotically those calculated by the continuous theory, but it is known that such asymptotic convergence may not occur in practice. For a smoothed surface { y ( X )} which is generated from a reference surface { z ( X )} by a ‘good’ footprint of finite area, it is shown in this paper that the expected asymptotic convergence does occur always, even if the reference surface is ideally white. For a footprint to be a good footprint, w ( X ) must be continuous and smooth enough that it can be differentiated twice everywhere, including at its edges. Sample calculations for three footprints, two of which are good footprints, illustrate the theory.


2017 ◽  
Vol 261 ◽  
pp. 267-274
Author(s):  
Pantelis N. Botsaris ◽  
Chaido Kyritsi ◽  
Dimitris Iliadis

In this paper, there is an attempt to monitor and evaluate machining parameters when turning 34CrNiMo6 material under different cooling and lubrication conditions. The machining parameters concerned are temperature of the cutting tool and the workpiece, level of vibrations of the cutting tool, surface roughness of the workpiece, noise levels of the turning process and current drawn by the main spindle motor. Four different experimental machining scenarios were completed, specifically: conventional wet turning process, dry cutting and two additional modes employing cooling by cold air. Experimental data were acquired and recorded by an optimally designed network of sensors. Experimental data were statistically analyzed in order to reach conclusions. According to the research that has been done, although, overall, minimum cutting tool and workpiece temperatures were observed under wet machining, cold air cooling is capable of achieving comparable cooling results to wet machining. The lowest values of surface roughness were achieved by wet machining, whereas the lowest level of cutting tool vibrations were observed under cold air cooling.


1980 ◽  
Vol 102 (3) ◽  
pp. 360-366 ◽  
Author(s):  
J. L. Teale ◽  
A. O. Lebeck

The average flow model presented by Patir and Cheng [1] is evaluated. First, it is shown that the choice of grid used in the average flow model influences the results. The results presented are different from those given by Patir and Cheng. Second, it is shown that the introduction of two-dimensional flow greatly reduces the effect of roughness on flow. Results based on one-dimensional flow cannot be relied upon for two-dimensional problems. Finally, some average flow factors are given for truncated rough surfaces. These can be applied to partially worn surfaces. The most important conclusion reached is that an even closer examination of the average flow concept is needed before the results can be applied with confidence to lubrication problems.


Sign in / Sign up

Export Citation Format

Share Document