Journal Bearing Lubrication and Design

1948 ◽  
Vol 158 (1) ◽  
pp. 250-254
Author(s):  
A. S. T. Thomson

The paper summarizes the results of an experimental investigation on the effects of variation in bearing width and radial clearance on the operating conditions of centrally loaded clearance journal bearings, the bearing arc being kept constant at 120 deg. The investigation, which was carried out prior to 1940, is complementary to an earlier paper by the author in which the effects of variations in bearing width and arc of embrace were investigated. The experimental results are compared with theoretical values modified by the relevant leakage coefficients. The measure of agreement obtained indicates that theoretical values so modified may be used with confidence in design. A short series of experiments is described; in these, high-point contact at starting and stopping is eliminated by supplying oil to a groove in the loaded side of the bearing at a pressure sufficiently great to overcome the applied load. The effect of a groove on the loaded side of the brass under various conditions of lubrication is investigated.

Author(s):  
I Pierre ◽  
M Fillon

Hydrodynamic journal bearings are essential components of high-speed machinery. In severe operating conditions, the thermal dissipation is not a negligible phenomenon. Therefore, a three-dimensional thermohydrodynamic (THD) analysis has been developed that includes lubricant rupture and re-formation phenomena by conserving the mass flowrate. Then, the predictions obtained with the proposed numerical model are validated by comparison with the measurements reported in the literature. The effects of various geometric factors (length, diameter and radial clearance) and operating conditions (rotational speed, applied load and lubricant) on the journal bearing behaviour are analysed and discussed in order to inform bearing designers. Thus, it can be predicted that the bearing performance obtained highly depends on operating conditions and geometric configuration.


1996 ◽  
Vol 10 (23n24) ◽  
pp. 3045-3055 ◽  
Author(s):  
P.G. NIKOLAKOPOULOS ◽  
C.A. PAPADOPOULOS

It is well known that the imposition of an electric field on an Electro-Rheological (ER) fluid alters the viscosity and as a consequence the f flow properties of the f fluid. If such a fluid is used to lubricate a journal bearing system, it is expected that the imposition of an electric field between the rotor and the stator will cause the alteration of the dynamic properties of the journal bearing. For the present, it has been proved that this is valid only for low speeds and high radial clearances of Couette type viscometers. In this paper an experiment in a high speeds (16000 to 65000 s −1) journal bearing with small radial clearance is presented. The experiment performed has showed the phenomenon and has proved that the ER FLUID at high shear rates under constant temperature, follows the Bingham model in realistic bearings. Properties such as wall shear stress, dynamic yield stress relative viscosity are experimentally determined as functions of the electric field, for different particle concentrations and the shear strain rate under constant or free to vary temperature (due to operating conditions, angular velocity, friction). Concluding the ER fluids can be used to create “smart” journal bearings. Vibration controllers can be constructed to control the stability of the ER fluid lubricated bearings.


2009 ◽  
Author(s):  
Jan H. Andersen ◽  
Hiroyuki Sada ◽  
Seiji Yamajo

This paper presents the results of an investigation into the theoretical and experimental performance of oil lubricated journal bearings. DNV has developed a new calculation tool for the analysis of journal bearing performance as part of shaft alignment analysis. The results of the calculation tool have been compared to other research and analysis methods under static and dynamic conditions. In addition, white metal bearings were tested with decreasing Sommerfeld number until loss of hydrodynamic lubrication. The experiments were carried out in a bearing test rig and with three different lubricants, normal mineral oil, emulsifying oil, and water-soluble oil. The tests were done with increasing water content in the lubricant. Results from the test were compared with calculation using the DNV analysis tool.


Author(s):  
S. K. Kakoty ◽  
S. K. Laha ◽  
P. Mallik

A theoretical analysis has been carried out to determine the stability of rigid rotor supported on two symmetrical finite two-layered porous oil journal bearings. The stability curves have been drawn for different eccentricity ratios and Sommerfeld numbers. The effect of bearing feeding parameter, L/D ratio on the stability is also investigated. This paper also deals with a theoretical investigation of stability using a non-linear transient method. This analysis gives the journal centre locus and from this the system stability can be determined. With the help of graphics, several trajectories of the journal centre have been obtained for different operating conditions. Finally a comparison between single-layered porous bearing and the two-layered porous bearing is presented here.


Lubricants ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 30 ◽  
Author(s):  
Hannes Allmaier ◽  
David E. Sander

The rotational dynamics and lubrication of the piston pin of a Gasoline engine are investigated in this work. The clearance plays an essential role for the lubrication and dynamics of the piston pin. To obtain a realistic clearance, as a first step, a thermoelastic simulation is conducted for the aluminum piston for the full-load firing operation by considering the heat flow from combustion into the piston top and suitable thermal boundary conditions for the piston rings, piston skirt, and piston void. The result from this thermoelastic simulation is a noncircular and strongly enlarged clearance. In the second step, the calculated temperature field of the piston and the piston-pin clearance are used in the simulation of the piston-pin journal bearings. For this journal bearing simulation, a highly advanced and extensively validated method is used that also realistically describes mixed lubrication. By using this approach, the piston-pin rotation and lubrication are investigated for several different operating conditions from part load to full load for different engine speeds. It is found that the piston pin rotates mostly at very slow rotational speeds and even changes its rotational direction between different operating conditions. Several influencing effects on this dynamic behaviour (e.g., clearance and pin surface roughness) are investigated to see how the lubrication of this crucial part can be improved.


1973 ◽  
Vol 187 (1) ◽  
pp. 71-78 ◽  
Author(s):  
B. R. Reason ◽  
D. Dyer

We present a numerical solution for the operating conditions of a hydrodynamic porous journal bearing. The numerical method allows for the possibility of variable porosity in the bearing matrix, but the solution has been achieved on the assumption of matrix homogeneity. The relation between the various bearing parameters have been shown for a variety of bearing geometries and permeabilities enabling the operating conditions for this type of bearing to be better appreciated. A comparison of the present solution with approximate solutions used by other authors has been made, which indicates the useful working range of the approximate solutions.


Author(s):  
H Hirani

An optimal design of hydrodynamic journal bearing using mass conserving thermal analysis and genetic algorithms is presented. Simultaneous minimization of power loss and oil flow, subjected to constraints on film thickness, film pressure, and temperature rise between the bearing surfaces, is the objective of this study. The radial clearance, L/D ratio, oil groove location, feed pressure, and the oil viscosity are the design variables. The rank-based genetic algorithm is used to deal with the discrete variables and multimodal objective functions and to capture Pareto optimal points. In view of computation economics and robustness, initial guesses of oil film pressure distribution, eccentricity ratio, and attitude angle obtained by two-dimensional analytical approach are provided for mass conserving thermal analysis. The complete optimization strategy is illustrated by a step-by-step (in four steps) approach. A comparative study of thermal and isothermal analyses is illustrated. Effects of constraints on temperature, pressure, and film thickness on the design vector are enlightened. The mass conserving thermal analysis is validated against experimental results. Pareto optimal fronts for various operating conditions are presented.


Author(s):  
Steven Chatterton ◽  
Filippo Cangioli ◽  
Paolo Pennacchi ◽  
Andrea Vania ◽  
Phuoc Vinh Dang

The current design trend of rotating machines like turbo-generators, compressors, turbines, and pumps is focused on obtaining both high dynamic performances and high versatility of machines in different operating conditions. The first target is nowadays achieved by equipping machines with tilting pad journal bearings. For the second target, State-of-the-Art researches are focused on the development of active systems able to adapt the dynamic behavior of the machine to the external environment and new operating conditions. Typical causes of large vibration in rotating machines are faults, residual unbalance, resonance condition and instabilities. Aiming at vibration reduction, in recent years many studies are carried out to investigate different solutions; one of them is based on active tilting pad journal bearing. In this paper, the authors investigate, by simulations, the reduction of shaft vibration by controlling the motion of the pads of a tilting pad journal bearing. The basic idea is to balance the exciting force on the shaft with a suitable resulting force of the oil-film pressure distribution. In particular, a sliding mode controller has been considered and both angular rotation of the pads about the pivot and the radial motion of the pivot have been analyzed. Sliding mode control guarantees high robustness of the control system in real applications that can be characterized by a strong non-linear behavior. In the paper a general consideration about the bearing, the actuating methods and the control system have been provided. A numerical analysis of large size rotor equipped with active pads has been carried out in order to verify the effectiveness of the system in several conditions, even during the most critical operating phase, i.e. the lateral critical speed.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1789
Author(s):  
Wei Wang ◽  
Wenhan Zhao ◽  
Yang Liu ◽  
Hui Zhang ◽  
Meng Hua ◽  
...  

This paper reports a novel pocket-textured surface for improving the tribological properties of point contact under starved lubrication by possibly storing and releasing oil, and homogenizing the surface contact pressure. The ball-on-disk experimental results confirmed the coefficient of friction (COF) and wear reduction effect of such pocket-texturing. The maximum reduction rate was 40% compared with a flat surface under the same operating conditions. Analyses on experimental results attributed the oil storage effect and enhanced the secondary lubrication effect within the starved lubrication state, to become the main mechanism. In addition, the plate elasticity and the Hertzian contact principles were employed to estimate the pressure and the load acting on the surface. The experimental results and numerical analysis substantiated the design of pocket-textured surface, making it likely to enlarge about 50% of contact surface and to reduce 90% of equivalent stress in comparison to those of conventional surfaces.


Author(s):  
Krystof Kryniski

Abstract Due to their reliability and low maintenance costs over an extended service time, the journal bearings, also known as fluid-film bearings, are commonly incorporated in the super-critical rotor systems. Together with proven balancing methods, they allow rotating machine to pass smoothly through the various of critical speeds, both during start-ups and shut-downs. However, journal bearings need to be designed very carefully, as at some operating conditions (speed and load), they may introduce the undesired effects, such as unstable operations or sub-harmonic resonances. The standard procedure leading to the optimum fluid-film bearing design is based on the bearing capacity, defined by the Sommerfield number [1][2]. When Sommerfield number is determined, all design parameters, such as viscosity, radial clearance, diameter and rotation speed, etc. are matched to satisfy the engineering requirements specified. The procedure is considered to be completely reliable and is commonly used in turbo-machinery and high-speed compressor design. However, the significant divergences between theory and practice were observed with the increase of a bearing radial clearance [3].


Sign in / Sign up

Export Citation Format

Share Document