scholarly journals LncRNA Snhg5 Attenuates Status Epilepticus Induced Inflammation through Regulating NF-κΒ Signaling Pathway

2022 ◽  
Vol 45 (1) ◽  
pp. 86-93
Author(s):  
Ming Wang ◽  
Yangmei Xie ◽  
Yiye Shao ◽  
Yinghui Chen
2019 ◽  
Vol 20 (4) ◽  
pp. 998 ◽  
Author(s):  
Yao-Chung Chuang ◽  
Shang-Der Chen ◽  
Chung-Yao Hsu ◽  
Shu-Fang Chen ◽  
Nai-Ching Chen ◽  
...  

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is known to regulate mitochondrial biogenesis. Resveratrol is present in a variety of plants, including the skin of grapes, blueberries, raspberries, mulberries, and peanuts. It has been shown to offer protective effects against a number of cardiovascular and neurodegenerative diseases, stroke, and epilepsy. This study examined the neuroprotective effect of resveratrol on mitochondrial biogenesis in the hippocampus following experimental status epilepticus. Kainic acid was microinjected into left hippocampal CA3 in Sprague Dawley rats to induce bilateral prolonged seizure activity. PGC-1α expression and related mitochondrial biogenesis were investigated. Amounts of nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (Tfam), cytochrome c oxidase 1 (COX1), and mitochondrial DNA (mtDNA) were measured to evaluate the extent of mitochondrial biogenesis. Increased PGC-1α and mitochondrial biogenesis machinery after prolonged seizure were found in CA3. Resveratrol increased expression of PGC-1α, NRF1, and Tfam, NRF1 binding activity, COX1 level, and mtDNA amount. In addition, resveratrol reduced activated caspase-3 activity and attenuated neuronal cell damage in the hippocampus following status epilepticus. These results suggest that resveratrol plays a pivotal role in the mitochondrial biogenesis machinery that may provide a protective mechanism counteracting seizure-induced neuronal damage by activation of the PGC-1α signaling pathway.


2017 ◽  
Vol 16 (2) ◽  
pp. 1691-1700 ◽  
Author(s):  
Yuan Xie ◽  
Nian Yu ◽  
Yan Chen ◽  
Kang Zhang ◽  
Hai-Yan Ma ◽  
...  

2021 ◽  
Author(s):  
Dong An ◽  
Xiuting Qi ◽  
Kunpeng Li ◽  
Weixing Xu ◽  
Yue Wang ◽  
...  

Abstract The blockage of transient receptor potential vanilloid 4 (TRPV4) greatly reduces hippocampal neuronal injury in mice with temporal lobe epilepsy through inhibiting inflammation. NF-κB signaling pathway is activated during epilepsy, leading to enhanced inflammation and neuronal injury. Here, we explored whether TRPV4 blockage could affect the NF-κB pathway in mice with pilocarpine-induced status epilepticus (PISE). Application of a TRPV4 antagonist markedly attenuated the PISE-induced increase in hippocampal HMGB1, TLR4, phospho (p)-IκK (p-IκK), and p-IκBα protein levels, as well as those of cytoplasmic p-NF-κB p65 (p-p65) and nuclear NF-κB p65 and p50; in contrast, the application of GSK1016790A, a TRPV4 agonist, showed similar changes to PISE mice. Administration of the TLR4 antagonist TAK-242 or the NF-κB pathway inhibitor BAY 11-7082 led to a noticeable reduction in the hippocampal protein levels of cleaved IL-1β, IL-6 and TNF, as well as those of cytoplasmic p-p65 and nuclear p65 and p50 in GSK1016790A-injected mice. Finally, administration of either TAK-242 or BAY 11-7082 greatly increased neuronal survival in hippocampal CA1 and CA2/3 regions in GSK1016790A-injected mice. We conclude that TRPV4 activation increases HMGB1 and TLR4 expression, leading to IκK and IκBα phosphorylation and, consequently, NF-κB activation and nuclear translocation. The resulting increase in pro-inflammatory cytokine production is responsible for TRPV4 activation-induced neuronal injury. Meanwhile, blocking TRPV4 can downregulate HMGB1/TLR4/IκK/κBα/NF-κB signaling following PISE onset, an effect that may underlie the neuroprotective ability of TRPV4 blockage in mice with PISE.


Sign in / Sign up

Export Citation Format

Share Document