scholarly journals The Impact of Varying Exercise Protocols on Neurogenesis and Angiogenesis in the Dentate Gyrus

2019 ◽  
Vol 51 (Supplement) ◽  
pp. 784
Author(s):  
Darrin Lenhart
Keyword(s):  
QJM ◽  
2020 ◽  
Vol 113 (Supplement_1) ◽  
Author(s):  
S S I Elkilany ◽  
M M A Zakaria ◽  
R F Tash ◽  
A Y Mostafa ◽  
S W Abdelmalik ◽  
...  

Abstract Background The importance of sleep and the impact of its deprivation on development of brain pathology became a recent subject of interest in medicine. The restorative effect of sleep on the brain and the harmful effects of insomnia have been recently revealed through the discovery of the glymphatic system and its association with sleep. Aim of work Specific objectives are: To detect histological and apoptotic changes in the neurons and dendrites of the cornu Amonis and the dentate gyrus in sleep deprived rats in comparison to rats with undisturbed sleep pattern (control). To detect deposition of neurotoxic metabolites in comu Amonis and dentate gyrus in sleep deprived rats in comparison to controls. Methods Twenty four adult male Albino rats were used in the present experiment. randomly categorized into four equal groups; Group A1 served as the control group, Group .A2 one day sleep deprivation, Group A3 three days sleep deprivation and Group A4 seven days sleep deprivation. They were deprived of sleep using grid over water method where the animals placed over a grid suspended above tank filled with water with free access to food (rat chew) and water. Hippocampai specimens were collected, processed for paraffin blocks and examined by light microscopy. Results there were neurodegenerative signs appeared from day one sleep deprivation, increased by day three and prevailed by day seven. It was confirmed by apoptotic changes detected by caspase 3 immunohistochemical staining. Furthermore, deposition of beta amyloid appeared in rats deprived of sleep and confirmed by congo red stain. Conclusion Adequate sleep is essential for integrity of the newly discovered glymphatic system responsible for clearance of the brain from waste products including the area most involved in learning and memory function; the hippocampus. Correction of SD could be a viable therapeutic strategy to prevent the onset or slow the progression of AD. Recommendations Further characterization of the glymphatic system in humans are required, it may lead to new therapies and methods of prevention of neurodegenerative diseases. Correction of SD could be a viable therapeutic strategy to prevent the onset or slow the progression of AD.


2017 ◽  
Author(s):  
Poonam Mishra ◽  
Rishikesh Narayanan

ABSTRACTThe ability of a neuronal population to effectuate response decorrelation has been identified as an essential prelude to efficient neural encoding. To what extent are diverse forms of local and afferent heterogeneities essential in accomplishing such response decorrelation in the dentate gyrus (DG)? Here, we incrementally incorporated four distinct forms of biological heterogeneities into conductance-based network models of the DG and systematically delineate their relative contributions to response decorrelation. We incorporated intrinsic heterogeneities by stochastically generating several electrophysiologically-validated basket and granule cell models that exhibited significant parametric variability, and introduced synaptic heterogeneities through randomized local synaptic strengths. In including adult neurogenesis, we subjected the valid model populations to randomized structural plasticity and matched neuronal excitability to electrophysiological data. We assessed networks comprising different combinations of these three local heterogeneities with identical or heterogeneous afferent inputs from the entorhinal cortex. We found that the three forms of local heterogeneities were independently and synergistically capable of mediating significant response decorrelation when the network was driven by identical afferent inputs. Strikingly, however, when we incorporated afferent heterogeneities into the network to account for the unique divergence in DG afferent connectivity, the impact of all three forms of local heterogeneities were significantly suppressed by the dominant role of afferent heterogeneities in mediating response decorrelation. Our results unveil a unique convergence of cellular- and network-scale degeneracy in the emergence of response decorrelation in the DG, and constitute a significant departure from the literature that assigns a critical role for local network heterogeneities in input discriminability.SIGNIFICANCE STATEMENTThe olfactory bulb and the dentate gyrus (DG) networks assimilate new neurons in adult rodents, with adult neurogenesis postulated to subserve efficacious information transfer by reducing correlations in neuronal responses to afferent inputs. Heterogeneities emerging from the lateral dendro-dendritic synapses, mediated by locally-projecting neurogenic inhibitory granule cells, are known to play critical roles in channel decorrelation in the olfactory bulb. However, the contributions of different heterogeneities in mediating response decorrelation in DG, comprising neurogenic excitatory granule cells projecting beyond DG and endowed with uniquely divergent afferent inputs, have not been delineated. Here, we quantitatively demonstrate the dominance of afferent heterogeneities, over multiple local heterogeneities, in the emergence of response decorrelation in DG, together unveiling cross-region degeneracy in accomplishing response decorrelation.


2021 ◽  
Author(s):  
Kamal Ranjbar ◽  
Ebrahim Zarrinkalam ◽  
Sara Soleimani Asl ◽  
Iraj Salehi ◽  
Masoumeh Taheri ◽  
...  

Various impacts of exercise on brain performance have been documented following morphine dependence induction; however, the underlying neuronal mechanisms remain unclear. The present research was done to investigate the impact of different exercise training modes on neuronal maturation, and synaptic plasticity in the perforant pathway (PP)-dentate gyrus (DG) synapse in the morphine-dependent rats. Five groups, including a control group (Con, ten healthy rats) and forty morphine-dependent rats were considered as follows (n=10/group):  1) sedentary-dependent (Sed-D); 2) endurance exercise-dependent (En-D); 3) strength exercise-dependent (St-D); and 4) concurrent exercise-dependent (Co-D). The exercise training groups were subjected to endurance, strength, and concurrent training 5 days per week for 10 weeks. After training sessions, the field excitatory postsynaptic potential (fEPSP) slope and population spike (PS) amplitude in DG were determined in response to high-frequency stimulation (HFS) of the PP. For assessing neurogenesis NeuroD level was evaluated after performing all experiments. Concurrent training increased PS amplitude and EPSP than the control group. NeuroD in the morphine-dependent rats significantly decreased, but concurrent training returned the NeuroD to the healthy rat level. Concurrent training can ameliorate synaptic plasticity impairment in morphine-dependent rats through neurogenesis promotion. According to the results, concurrent training can be an appropriate novel candidate for treating opioid addiction.


2020 ◽  
Vol 21 (5) ◽  
pp. 1724 ◽  
Author(s):  
Gerardo Bernabé Ramírez-Rodríguez ◽  
Diana Montserrat Palacios-Cabriales ◽  
Leonardo Ortiz-López ◽  
Erika Montserrat Estrada-Camarena ◽  
Nelly Maritza Vega-Rivera

Adult neurogenesis occurs in the dentate gyrus (DG) of the hippocampus. New neurons help to counteract the effects of stress and several interventions including antidepressant drugs, environmental modifications and internal factors act pro-neurogenic with consequences in the dorsal and ventral DG. Melatonin, the main product synthesized by the pineal gland, induces antidepressant-like effects and modulates several events of the neurogenic process. However, the information related to the capability of melatonin to modulate dendrite maturation and complexity in the dorsal and ventral regions of the DG and their correlation with its antidepressant-like effect is absent. Thus, in this study, we analyzed the impact of melatonin (0, 0.5, 1, 2.5, 5 or 10 mg/kg) administered daily for fourteen days on the number, dendrite complexity and distribution of doublecortin (DCX)-cells in the dorsal-ventral regions of the DG in male Balb/C mice. Doublecortin is a microtubule-associated protein that is expressed during the course of dendritic maturation of newborn neurons. Also, we analyzed the impact of melatonin on despair-like behavior in the forced swim test. We first found a significant increase in the number and higher dendrite complexity, mainly with the doses of 2.5, 5 and 10 mg/kg of melatonin (81%, 122%, 78%). These cells showed more complex dendritic trees in the ventral- and the dorsal- DG. Concomitantly, the doses of 5 and 10 mg/kg of melatonin decreased depressant-like behavior (76%, 82%). Finally, the data corroborate the antidepressant-like effect of melatonin and the increasing number of doublecortin-associated cells. Besides, the data indicate that melatonin favors the number and dendrite complexity of DCX-cells in the dorsal- and ventral- region of the DG, which may explain part of the antidepressant-like effect of melatonin.


2013 ◽  
Vol 110 (2) ◽  
pp. 441-455 ◽  
Author(s):  
Boris Gafurov ◽  
Suzanne B. Bausch

The impact of regional hippocampal interactions and GABAergic transmission on ictogenesis remain unclear. Cortico-hippocampal slices from pilocarpine-treated epileptic rats were compared with controls to investigate associations between seizurelike events (SLE), GABAergic transmission, and neuronal synchrony within and between cortico-hippocampal regions. Multielectrode array recordings revealed more prevalent hippocampal SLE in epileptic tissue when excitatory transmission was enhanced and GABAergic transmission was intact [removal of Mg2+ (0Mg)] than when GABAergic transmission was blocked [removal of Mg2+ + bicuculline methiodide (0Mg+BMI)]. When activity within individual regions was analyzed, spectral and temporal slow oscillation/SLE correlations and cross-correlations were highest within the hilus of epileptic tissue during SLE but were similar in 0Mg and 0Mg+BMI. GABAergic facilitation of spectral “slow” oscillation and ripple correlations was most prominent within CA3 of epileptic tissue during SLE. When activity between regions was analyzed, slow oscillation and ripple coherence was highest between the hilus and dentate gyrus as well as between the hilus and CA3 of epileptic tissue during SLE and was significantly higher in 0Mg than 0Mg+BMI. High 0Mg-induced SLE cross-correlations between the hilus and dentate gyrus as well as between the hilus and CA3 were reduced or abolished in 0Mg+BMI. SLE cross-correlation lag measurements provided evidence for a monosynaptic connection from the hilus to the dentate gyrus during SLE. Findings implicate the hilus as an oscillation generator, whose impact on other cortico-hippocampal regions is mediated by GABAergic transmission. Data also suggest that GABAA receptor-mediated transmission facilitates back-propagation from CA3/hilus to the dentate gyrus and that this back-propagation augments SLE in epileptic hippocampus.


2007 ◽  
Vol 75 (9) ◽  
pp. 4289-4297 ◽  
Author(s):  
Olaf Hoffmann ◽  
Cordula Mahrhofer ◽  
Nina Rueter ◽  
Dorette Freyer ◽  
Bettina Bert ◽  
...  

ABSTRACT Bacterial meningitis is a major infectious cause of neuronal degeneration in the hippocampus. Neurogenesis, a continuous process in the adult hippocampus, could ameliorate such loss. Yet the high rate of sequelae from meningitis suggests that this repair mechanism is inefficient. Here we used a mouse model of nonreplicative bacterial meningitis to determine the impact of transient intracranial inflammation on adult neurogenesis. Experimental meningitis resulted in a net loss of neurons, diminished volume, and impaired neurogenesis in the dentate gyrus for weeks following recovery from the insult. Inducible nitric oxide synthase (iNOS) immunoreactivity was prominent in microglia in nonproliferating areas of the dentate gyrus and hilus region after meningitis induction. Treatment with the specific iNOS inhibitor N6-(1-iminoethyl)-l-lysine restored neurogenesis in experimental meningitis. These data suggest that local central nervous system inflammation in and of itself suppresses adult neurogenesis by affecting both proliferation and neuronal differentiation. Repair of cognitive dysfunction following meningitis could be improved by intervention to interrupt these actively suppressive effects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Richard P. Sloan ◽  
Melanie Wall ◽  
Lok-Kin Yeung ◽  
Tianshu Feng ◽  
Xinyang Feng ◽  
...  

AbstractWith the world's population aging, age-related memory decline is an impending cognitive epidemic. Assessing the impact of diet on cognitive aging, we conducted a controlled, randomized, parallel-arm dietary intervention with 211 healthy adults (50–75 years) investigating effects of either a placebo or 260, 510 and 770 mg/day of cocoa flavanols for 12-weeks followed by 8-weeks washout. The primary outcome was a newly-developed object-recognition task localized to the hippocampus’ dentate gyrus. Secondary outcomes included a hippocampal-dependent list-learning task and a prefrontal cortex-dependent list-sorting task. The alternative Healthy Eating Index and a biomarker of flavanol intake (gVLM) were measured. In an MRI substudy, hippocampal cerebral blood volume was mapped. Object-recognition and list-sorting performance did not correlate with baseline diet quality and did not improve after flavanol intake. However, the hippocampal-dependent list-learning performance was directly associated with baseline diet quality and improved after flavanol intake, particularly in participants in the bottom tertile of baseline diet quality. In the imaging substudy, a region-of-interest analysis was negative but a voxel-based-analysis suggested that dietary flavanols target the dentate gyrus. While replication is needed, these findings suggest that diet in general, and dietary flavanols in particular, may be associated with memory function of the aging hippocampus and normal cognitive decline.


2018 ◽  
Vol 115 (41) ◽  
pp. 10487-10492 ◽  
Author(s):  
Kazuya Suwabe ◽  
Kyeongho Byun ◽  
Kazuki Hyodo ◽  
Zachariah M. Reagh ◽  
Jared M. Roberts ◽  
...  

Physical exercise has beneficial effects on neurocognitive function, including hippocampus-dependent episodic memory. Exercise intensity level can be assessed according to whether it induces a stress response; the most effective exercise for improving hippocampal function remains unclear. Our prior work using a special treadmill running model in animals has shown that stress-free mild exercise increases hippocampal neuronal activity and promotes adult neurogenesis in the dentate gyrus (DG) of the hippocampus, improving spatial memory performance. However, the rapid modification, from mild exercise, on hippocampal memory function and the exact mechanisms for these changes, in particular the impact on pattern separation acting in the DG and CA3 regions, are yet to be elucidated. To this end, we adopted an acute-exercise design in humans, coupled with high-resolution functional MRI techniques, capable of resolving hippocampal subfields. A single 10-min bout of very light-intensity exercise (30%V˙O2peak) results in rapid enhancement in pattern separation and an increase in functional connectivity between hippocampal DG/CA3 and cortical regions (i.e., parahippocampal, angular, and fusiform gyri). Importantly, the magnitude of the enhanced functional connectivity predicted the extent of memory improvement at an individual subject level. These results suggest that brief, very light exercise rapidly enhances hippocampal memory function, possibly by increasing DG/CA3−neocortical functional connectivity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Fabíola de Carvalho Chaves de Siqueira Mendes ◽  
Luisa Taynah Vasconcelos Barbosa Paixão ◽  
Daniel Guerreiro Diniz ◽  
Daniel Clive Anthony ◽  
Dora Brites ◽  
...  

To explore the impact of reduced mastication and a sedentary lifestyle on spatial learning and memory in the aged mice, as well as on the morphology of astrocytes in the molecular layer of dentate gyrus (MolDG), different masticatory regimens were imposed. Control mice received a pellet-type hard diet, while the reduced masticatory activity group received a pellet diet followed by a powdered diet, and the masticatory rehabilitation group received a pellet diet, followed by powder diet and then a pellet again. To mimic sedentary or active lifestyles, mice were housed in an impoverished environment of standard cages or in an enriched environment. The Morris Water Maze (MWM) test showed that masticatory-deprived group, regardless of environment, was not able to learn and remember the hidden platform location, but masticatory rehabilitation combined with enriched environment recovered such disabilities. Microscopic three-dimensional reconstructions of 1,800 glial fibrillary acidic protein (GFAP)-immunolabeled astrocytes from the external third of the MolDG were generated using a stereological systematic and random sampling approach. Hierarchical cluster analysis allowed the characterization into two main groups of astrocytes with greater and lower morphological complexities, respectively, AST1 and AST2. When compared to compared to the hard diet group subjected to impoverished environment, deprived animals maintained in the same environment for 6 months showed remarkable shrinkage of astrocyte branches. However, the long-term environmental enrichment (18-month-old) applied to the deprived group reversed the shrinkage effect, with significant increase in the morphological complexity of AST1 and AST2, when in an impoverished or enriched environment. During housing under enriched environment, complexity of branches of AST1 and AST2 was reduced by the powder diet (pellet followed by powder regimes) in young but not in old mice, where it was reversed by pellet diet (pellet followed by powder and pellet regime again). The same was not true for mice housed under impoverished environment. Interestingly, we were unable to find any correlation between MWM data and astrocyte morphological changes. Our findings indicate that both young and aged mice subjected to environmental enrichment, and under normal or rehabilitated masticatory activity, preserve spatial learning and memory. Nonetheless, data suggest that an impoverished environment and reduced mastication synergize to aggravate age-related cognitive decline; however, the association with morphological diversity of AST1 and AST2 at the MolDG requires further investigation.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Serena E. Dillon ◽  
Demitra Tsivos ◽  
Michael Knight ◽  
Bryony McCann ◽  
Catherine Pennington ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document