scholarly journals Criminal Deterrence when There Are Offsetting Risks: Traffic Cameras, Vehicular Accidents, and Public Safety

2020 ◽  
Vol 12 (3) ◽  
pp. 202-237 ◽  
Author(s):  
Justin Gallagher ◽  
Paul J. Fisher

Numerous cities have enacted electronic monitoring programs at traffic intersections in an effort to reduce the high number of vehicle accidents. The rationale is that the higher expected fines for running a red light will induce drivers to stop and lead to fewer cross-road collisions. However, the cameras also incentivize drivers to accept a greater accident risk from stopping. We evaluate the termination of a monitoring program via a voter referendum using 12 years of geocoded police accident data. We find that the cameras changed the composition of accidents but no evidence of a reduction in total accidents or injuries. (JEL D72, K42, R41)

Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 168
Author(s):  
Wade A. Rourke ◽  
Andrew Justason ◽  
Jennifer L. Martin ◽  
Cory J. Murphy

Shellfish toxin monitoring programs often use mussels as the sentinel species to represent risk in other bivalve shellfish species. Studies have examined accumulation and depuration rates in various species, but little information is available to compare multiple species from the same harvest area. A 2-year research project was performed to validate the use of mussels as the sentinel species to represent other relevant eastern Canadian shellfish species (clams, scallops, and oysters). Samples were collected simultaneously from Deadmans Harbour, NB, and were tested for paralytic shellfish toxins (PSTs) and amnesic shellfish toxin (AST). Phytoplankton was also monitored at this site. Scallops accumulated PSTs and AST sooner, at higher concentrations, and retained toxins longer than mussels. Data from monitoring program samples in Mahone Bay, NS, are presented as a real-world validation of findings. Simultaneous sampling of mussels and scallops showed significant differences between shellfish toxin results in these species. These data suggest more consideration should be given to situations where multiple species are present, especially scallops.


Author(s):  
Gyorgy Szasz ◽  
Karen K. Fujikawa

Though piping is one of the largest and most expensive types of components in a plant, piping vibration is seldom monitored in a routine manner. Piping itself rarely fails due to vibration, but the same can not be said for related components such as supports, welds, valves, etc. Typically the only time piping vibration is monitored is if high vibration is perceived by operators or is expected due to plant operational changes such as uprates or major component replacements. The procedure for a comprehensive piping vibration monitoring program is thus not as widely known as that for other components such as rotating machinery. This paper presents the steps involved with monitoring piping vibration, obtaining meaningful data and ways to interpret the data. It could be viewed as a primer to those who have never been involved with vibration testing on piping, or as a guideline and checklist for those who have.


2005 ◽  
Vol 62 (12) ◽  
pp. 2716-2726 ◽  
Author(s):  
Michael J Bradford ◽  
Josh Korman ◽  
Paul S Higgins

There is considerable uncertainty about the effectiveness of fish habitat restoration programs, and reliable monitoring programs are needed to evaluate them. Statistical power analysis based on traditional hypothesis tests are usually used for monitoring program design, but here we argue that effect size estimates and their associated confidence intervals are more informative because results can be compared with both the null hypothesis of no effect and effect sizes of interest, such as restoration goals. We used a stochastic simulation model to compare alternative monitoring strategies for a habitat alteration that would change the productivity and capacity of a coho salmon (Oncorhynchus kisutch) producing stream. Estimates of the effect size using a freshwater stock–recruit model were more precise than those from monitoring the abundance of either spawners or smolts. Less than ideal monitoring programs can produce ambiguous results, which are cases in which the confidence interval includes both the null hypothesis and the effect size of interest. Our model is a useful planning tool because it allows the evaluation of the utility of different types of monitoring data, which should stimulate discussion on how the results will ultimately inform decision-making.


2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Riana Septiani ◽  

Abstract In conducting activities, many found workers who did not use personal protective equipment, do not pay attention to safety in work and work done like without procedure. PT. Budi Dwiyasa Perkasais a plantation company palm oil. Based on accident data obtained work, there are 14 case of accident in April until June 2016 in PT. Budi Dwiyasa Perkasa. A major factor cause of the accident is unsafe actions and unsafe conditions. Hazard analysis needs to be done in order to prevent the accident of work. Hazard identification done with using the risk assessment method. This analysis of the technique used to determine the level of the risk of a job is a combination of between the possibility of the harms caused by the severity of the caused. The result of hazard identification with this method is used in a kind of work to have a high risk level and need to address special in order to prevent the accident. Keywords: safety, accident, risk, hazard identification,


<i>Abstract</i>.—Zooplankton communities perform a critical role as secondary producers in marine ecosystems. They are vulnerable to climate-induced changes in the marine environment, including temperature, stratification, and circulation, but the effects of these changes are difficult to discern without sustained ocean monitoring. The physical, chemical, and biological environment of the Gulf of Maine, including Georges Bank, is strongly influenced by inflow from the Scotian Shelf and through the Northeast Channel, and thus observations both in the Gulf of Maine and in upstream regions are necessary to understand plankton variability and change in the Gulf of Maine. Large-scale, quasi synoptic plankton surveys have been performed in the Gulf of Maine since Bigelow’s work at the beginning of the 20th century. More recently, ongoing plankton monitoring efforts include Continuous Plankton Recorder sampling in the Gulf of Maine and on the Scotian Shelf, U.S. National Marine Fisheries Service’s MARMAP (Marine Resources Monitoring, Assessment, and Prediction) and EcoMon (Ecosystem Monitoring) programs sampling the northeast U.S. Continental Shelf, including the Gulf of Maine, and Fisheries and Oceans Canada’s Atlantic Zone Monitoring Program on the Scotian Shelf and in the eastern Gulf of Maine. Here, we review and compare past and ongoing zooplankton monitoring programs in the Gulf of Maine region, including Georges Bank and the western Scotian Shelf, to facilitate retrospective analysis and broadscale synthesis of zooplankton dynamics in the Gulf of Maine. Additional sustained sampling at greater-than-monthly frequency at selected sites in the Gulf of Maine would be necessary to detect changes in phenology (i.e. seasonal timing of biological events). Sustained zooplankton sampling in critical nearshore fish habitats and in key feeding areas for upper trophic level organisms, such as marine mammals and seabirds, would yield significant insights into their dynamics. The ecosystem dynamics of the Gulf of Maine are strongly influenced by large-scale forcing and variability in upstream inflow. Improved coordination of sampling and data analysis among monitoring programs, effective data management, and use of multiple modeling approaches will all enhance the mechanistic understanding of the structure and function of the Gulf of Maine pelagic ecosystem.


2018 ◽  
Vol 26 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Joshua G. Cronmiller ◽  
Bram F. Noble

Long-term regional environmental monitoring, coupled with shorter-term and more localized monitoring carried out under regulatory permitting processes, is foundational to identifying, understanding, and effectively managing cumulative environmental effects. However, monitoring programs that emerge to support cumulative effects science are often short-lived initiatives or disconnected from land use planning and regulatory decision making. This paper examines the history and evolution of environmental monitoring in the Lower Athabasca region of Alberta, Canada, and the enabling and constraining influences of institutional arrangements. Methods involved a review of regional-scale monitoring programs based on an analysis of monitoring agency mandates, performance reports, and external program reviews, supplemented by discussions with monitoring program or agency key informants to triangulate results. Results show that monitoring to support cumulative effects understanding in the Lower Athabasca has advanced considerably, especially since the mid-1990s, but its relevance to, and impact on, cumulative effects management and decision making has been stifled by institutional arrangements. Monitoring has been episodic, reflecting shifting priorities and competing mandates; criticized by stakeholders based on concerns about transparency, credibility, influence over decision making; and characterized by short-lived commitments by the agencies involved. This has generated significant uncertainty about the stability of institutional arrangements to support long-term environmental monitoring, and tensions between the need for scientific autonomy for credible science whilst ensuring the pursuit of monitoring questions that are relevant to the day-to-day needs of regulatory decision makers. Regional monitoring programs require, at a minimum, clear vision and agreed-upon monitoring questions that are of scientific and management value, meaningful and balanced stakeholder engagement, and a clear governance process to ensure credibility and influence of monitoring results on decision making.


2013 ◽  
Vol 53 (2) ◽  
pp. 480
Author(s):  
Andrew Smith

The Gorgon Project will develop the Gorgon and Jansz-Io gas fields, located in the Greater Gorgon area, about 130 km off the northwest coast of WA. It includes the construction of a 15 million tonne per annum (mtpa) LNG plant on Barrow Island and a domestic gas plant with the capacity to provide 300 terajoules per day to supply gas to WA. Barrow Island—where Gorgon will be located—is an internationally significant nature reserve and the site of Australia’s largest onshore operating oil field for the past 45 years. As a world-class example of environmental management, it has shown that conservation and development can successfully co-exist. Recognising the importance of Barrow Island’s conservation values, the terrestrial and subterranean environmental monitoring program encompasses key ecological elements on Barrow Island including birds, mammals, subterranean fauna, vegetation, and surface water and land forms. These elements are monitored in relation to the potential impact from environmental stressors identified during pre-construction environmental impact assessments. Here, the author describes the monitoring surveys conducted during the year as appropriate according to the element being considered. All surveys are executed using the Gorgon Project field mobilisation and deployment process, a stringent and dedicated system that ensures all essential health and safety processes are in place and adhered to. Each element is monitored for signs of positive or negative impact across Barrow Island with comparisons made between the pre-determined Terrestrial Disturbance Footprint (TDF) and areas outside of the TDF in which the Gorgon Project is committed to causing zero environmental harm. Statistical control charts and tiered response triggers based on standard deviations are used to inform management decisions about potential environmental effects attributable to the Gorgon Project. A continuous review process is in place to ensure all monitoring programs are scientifically robust and use up-to-date methodologies. Monitoring reports are used to assess the validity of each program and supplementary programs aimed at addressing gaps in existing knowledge are started as and when needed. A reporting framework is in place to ensure regulatory authorities are informed and collaborations are sought to advance overall understanding of the ecology and biology of Barrow Island fauna and flora. The Gorgon Project is operated by an Australian subsidiary of Chevron and is a joint venture of the Australian subsidiaries of Chevron (about 47%), ExxonMobil (25%), Shell (25%), Osaka Gas (1.25%), Tokyo Gas (1%) and Chubu Electric Power (0.417%).


Diversity ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 155
Author(s):  
Kelly R. Munkittrick ◽  
Tim J. Arciszewski ◽  
Michelle A. Gray

In Canada, there is almost 30 years of experience in developing tiered and triggered adaptive monitoring programs focused on looking at whether environmental concerns remain when pulp and paper mills, or metal mines, are in compliance with their discharge limits. These environmental effects monitoring programs were based on nationally standardized designs. Many of the programs have been developed through multi-stakeholder working groups, and the evolution of the program faced repeated frictions and differing opinions on how to design environmental monitoring programs. This paper describes key guidance to work through the initial steps in program design, and includes scientific advice based on lessons learned from the development of the Canadian aquatic environmental effects monitoring program.


Sign in / Sign up

Export Citation Format

Share Document