scholarly journals Adsorption of Di-N-butyl Phthalate onto Nutshell-Based Activated Carbon. Equilibrium, Kinetics and Thermodynamics

2009 ◽  
Vol 27 (7) ◽  
pp. 685-700 ◽  
Author(s):  
Z.Q. Fang ◽  
H.J. Huang

The adsorption of di-n-butyl phthalate (DBP) from aqueous solution was studied in a batch adsorption system. Activated carbons from coals, coconut shell and nutshell were evaluated to determine the most effective adsorbent. Kinetic and equilibrium studies were investigated at various initial DBP concentration (3–6 mg/ℓ), adsorbent dosage (40–140 mg/ℓ), suspension pH (3–9) and temperature (25–55 °C). Equilibrium adsorption isotherms were analyzed using the Langmuir, Freundlich and Temkin models. The experimental isotherms were S-type, with the Freundlich isotherm giving a good description of the data obtained at lower DBP concentration. The pseudo-first-order, pseudo-second-order and intra-particle diffusion models were used to fit the kinetic adsorption data. It was found that the adsorption of DBP followed pseudo-first-order kinetics, with the adsorption rate being controlled by both film and pore diffusion. The enthalpy, entropy and Gibbs' free energy constants were calculated. It was found that the adsorption was spontaneous and endothermic, with favourable adsorption capacities being observed at higher temperatures.

2012 ◽  
Vol 14 (4) ◽  
pp. 88-94 ◽  
Author(s):  
R.P. Suresh Jeyakumar ◽  
V. Chandrasekaran

Abstract In this work, the efficiency of Ulva fasciata sp. activated carbons (CCUC, SCUC and SSUC) and commercially activated carbon (CAC) were studied for the removal of Cu (II) ions from synthetic wastewater. Batch adsorption experiments were carried out as a function of pH, contact time, initial copper concentration and adsorbent dose. The percentage adsorption of copper by CCUC, SSUC, SCUC and CAC are 88.47%, 97.53%, 95.78% and 77.42% respectively. Adsorption data were fitted with the Langmuir, Freundlich and Temkin models. Two kinetic models pseudo first order and the pseudo second order were selected to interpret the adsorption data.


Author(s):  
Ebenezer Olujimi Dada ◽  
Ilesanmi Ademola Ojo ◽  
Abass Olanrewaju Alade ◽  
Tinuade Jolaade Afolabi ◽  
Omotayo Sharafdeen Amuda ◽  
...  

Matured flamboyant pods (FBP) activated with ZnCl2 were used for batch adsorption of Bromophenol blue (BPB) dye under the effects of concentration (10-200 ppm), contact time (20-300 min), biosorbent dosage (20-120 mg) and particle size (300-850 µm). The data obtained were fitted to Langmuir and Freundlich isotherm models as well as pseudo-first-order (PFO), pseudo-second-order (PSO) and Elovich kinetic models. The highest adsorption capacity and removal efficiency of 7.5762 mg/g and 75.76%, respectively, were obtained under the effects of initial dye concentrations. The correlation coefficient (R2) for the Langmuir and Freundlich isotherms are in the range 0.9938-0.9979 and 0.9895-0.9953, respectively, while, R2, in the ranges 0.5931-0.815, 0.9962-1.000 and 0.8046-0.8828, were obtained for the PFO, PSO, and Elovich kinetic models, respectively. The order of fit of the kinetic models is PSO > Elovich > PFO. The study suggests flamboyant pod as promising biomass for the remediation of dye-bearing industrial effluents.


2015 ◽  
Vol 72 (12) ◽  
pp. 2229-2235 ◽  
Author(s):  
Xiaohong Liu ◽  
Fang Wang ◽  
Song Bai

An original activated carbon prepared from walnut peel, which was activated by zinc chloride, was modified with ammonium hydroxide or sodium hydroxide in order to contrast the adsorption property of the three different activated carbons. The experiment used a static adsorption test for p-nitrophenol. The effects of parameters such as initial concentration, contact time and pH value on amount adsorbed and removal are discussed in depth. The thermodynamic data of adsorption were analyzed by Freundlich and Langmuir models. The kinetic data of adsorption were measured by the pseudo-first-order kinetics and the pseudo-second-order kinetics models. The results indicated that the alkalized carbon samples derived from walnut peel had a better performance than the original activated carbon treated with zinc chloride. It was found that adsorption equilibrium time was 6 h. The maximum removal rate of activated carbon treated with zinc chloride for p-nitrophenol was 87.3% at pH 3,whereas the maximum removal rate of the two modified activated carbon materials was found to be 90.8% (alkalized with ammonium hydroxide) and 92.0% (alkalized with sodium hydroxide) at the same pH. The adsorption data of the zinc chloride activated carbon were fitted to the Langmuir isotherm model. The two alkalized activated carbon samples were fitted well to the Freundlich model. The pseudo-second-order dynamics equation provided better explanation of the adsorption dynamics data of the three activated carbons than the pseudo-first-order dynamics equation.


2015 ◽  
Vol 93 (10) ◽  
pp. 1083-1087 ◽  
Author(s):  
Ali Issa Ismail

Graphene is a newly discovered material and is considered to be the new wonder material for many applications. The recent possibility of obtaining pure and fully characterized graphene opens the door to the study of the adsorption of toxic materials on graphene. The adsorption behavior of p-nitrophenol on graphene was studied in aqueous medium. The effect of each of pH, temperature, and dosage was emphasized. The highest calculated adsorption capacity of 4-nitrophenol was found to be 15.5 mg/g, assuming Langmuir fitting starting from 11.1 mg/g initial concentration at 298 K and pH = 6. Fitting the data using the Freundlich isotherm model predicted a favorable adsorption process (n > 1). The rise and saturation areas of the isotherms were fitted as pseudo first-order and pseudo second-order processes, respectively, with relatively good fit (k1 = 0.0023/s, k2 = 0.68 g mg−1 s−1). The thermodynamic properties indicated a spontaneous and exothermic process.


2018 ◽  
Vol 66 (2) ◽  
pp. 121-127
Author(s):  
AZM Mainul Islam Mazumder ◽  
Chowdhury Raihan Bikash ◽  
Md Ataur Rahman ◽  
Md Mufazzal Hossain

Adsorptive removal of remazol red R (RRR) and remazol black B (RBB) from aqueous solution has been investigated by using ZnO as an adsorbent. Time for adsorption equilibrium, kinetics of adsorption at different initial concentrations of dyes and adsorption isotherms at different temperatures have been studied. Adsorption capacity increased with increasing initial dye concentration. The pseudo first-order and pseudo second-order kinetics were used to describe kinetic data and the rate constants were evaluated. Experimental data fits better in the pseudo second-order kinetic model than in the pseudo first-order kinetic model for both the dyes. Langmuir and Freundlich isotherm models were applied to describe the adsorption of RRR and RBB onto ZnO powders. Langmuir isotherm model provided a better correlation for the experimental data in comparison to the Freundlich isotherm model. Adsorption of both RRR and RBB on ZnO are physical in nature and increases with decreasing temperature. The equilibrium adsorption capacity decreases from 3.43 mg/g at 200C to 2.36 mg/g at 400C for RRR whereas that in the case of RBB changes from 0.77 mg/g at 300C to 0.75 mg/g at 400C. Adsorption of RRR on ZnO was found to be three times higher than the adsorption of RBB at a particular temperature. A model for adsorption of both the dyes has been proposed. Dhaka Univ. J. Sci. 66(2): 121-127, 2018 (July)


2012 ◽  
Vol 30 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Fadela Nemchi ◽  
Benaouda Bestani ◽  
Nouredine Benderdouche ◽  
Mostefa Belhakem ◽  
Louis Charles de Minorval

Adsorbents prepared from seawater algae, viz. green Ulva lactuca (PGA) and brown Systoceira stricta (PBA), by chemical activation were successfully tested for the removal of Supranol Yellow 4GL dye from aqueous solutions. Impregnation in 20% phosphoric acid for 2 h at 170 °C and subsequent air activation at 600 °C for 3 h significantly enhanced the adsorption capacities of both algae relative to their inactivated states. Parameters influencing the adsorption capacity such as contact time, adsorbent dosage, pH and temperature were studied. Similar experiments were carried out with commercially available Merck activated carbon (MAC) for comparative purposes. Adsorption efficiencies were measured at a pH 2 and dosages of 8 g/ℓ and 12 g/ℓ for PGA and PBA, respectively. Batch adsorption experiments resulted in maximum adsorption capacities determined from Langmuir models of up to 263, 93 and 84 mg/g for PGA, PBA and MAC, respectively. BET, FT-IR analyses, iodine number and Methylene Blue index determination were also performed to characterize the prepared adsorbents. The adsorption kinetics were found to comply with the pseudo-second-order model with intra-particle diffusion being the rate-determining step. Thermodynamic analysis confirmed that the adsorption reaction was spontaneous and endothermic. These studies indicate that these seawater algae could be used as low-cost alternatives for the removal of dyes.


2017 ◽  
Vol 79 (7) ◽  
Author(s):  
Abdulganiyu Umar ◽  
Mohd Marsin Sanagi ◽  
Ahmedy Abu Naim ◽  
Wan Nazihah Wan Ibrahim ◽  
Aemi Syazwani Abdul Keyon ◽  
...  

In this work, polystyrene modified-chitin was evaluated for the first time as adsorbent for the removal of Orange G from aqueous solutions. Its absorption capacity was compared to that of chitin. BET and FESEM results showed that the polystyrene-modified chitin has higher surface area (12.47 m2/g) compared to chitin (4.92 m²/g). Batch adsorption experiments on the removal of Orange G from aqueous solutions were conducted. The results showed that the polystyrene-modified chitin has improved adsorption capacity compared to chitin. The maximum adsorption of orange G by chitin occurred at pH 2, while that of the polystyrene-modified chitin occurred at pH 6. At an initial concentration of 20 mg/L, the percentages of dye removal were 65.16% and 81.20% for raw chitin (RCH) and polystyrene-modified chitin (MCH), respectively. Kinetics studies for the adsorbents were conducted using pseudo-first-order and pseudo-second-order models. The pseudo-first-order model gives poor fittings for both adsorbents, with low coefficients of determination (R2). The pseudo-second-order model fits the experimental data well, with R2 close to unity. Langmuir and Freundlich models were used to interpret the adsorption isotherms. It was found that Langmuir isotherm conformed better than Freundlich model in the adsorption of selected dye on chitin and the polystyrene-modified chitin, with R2 nearly unity.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Michael Akrofi Anang ◽  
Ruphino Zugle ◽  
Baah Sefa-Ntiri

Rice husk was used to synthesize zeolite (ZSM-11). FTIR and X-ray diffraction methods were used to characterize the product. The synthesized zeolite was used to treat underground water from some communities in Cape Coast considering parameters such as total dissolved solids, total hardness, conductivity, nitrate, and phosphate. The percentage reduction in PO43− was 96.1% in Ebubonko and 92.5% in Apewosika. Similarly, the NO3− levels also decreased significantly in Kwaprow. The adsorption capability was also determined by using it to remove Pb2+ and Zn2+ from laboratory prepared solutions with varying masses. The percentage reduction recorded 90.57% and 86.61% for the 1.0 g whilst the 1.5 g showed 93.26% and 89.36%, respectively. It was also realized that the adsorption process followed a pseudo-first-order rather than the pseudo-second-order process with their R2 values of 0.9929 and 0.8503 for the pseudo-first-order and 0.9662 and 0.6912 for the second-order for Pb2+ and Zn2+, respectively. The adsorption capacity also favored the Freundlich isotherm with R2 values of 0.7578 and 0.642 rather than Langmuir isotherm with R2 values of 0.1742 and 0.3856 for Pb2+ and Zn2+, respectively. The photodegradation ability of the synthesized zeolite was analyzed using rhodamine blue (RhB) and methyl orange (MO). The process was realized to favor the pseudo-second-order with R2 values of 0.9986 and 0.0007 and a constant K2 of 0.035 and 0.021 for RhB and MO, respectively, whereas the pseudo-first-order showed an R2 value of 0.9376 and 0.9757 with K1 values of 0.03 and 0.02.


2013 ◽  
Vol 726-731 ◽  
pp. 2191-2197 ◽  
Author(s):  
Su Yun He ◽  
Cai Yun Han ◽  
Su Fang He ◽  
Hua Wang ◽  
Chun Xia Liu ◽  
...  

This research presented the kinetic performance of arsenic absorption by mesostructure SBA-15 functionalized with Al2O3. The SBA-15 was previously synthesised and subsequently functionalized via impregnation of alumina oxides. The absorption of arsenic(V) was studied as a function of absorbent dosage and contact time. The experimental data were fitted to kinetic pseudo-first order, pseudo-second order and the intra-particle diffusion model. The pseudo-second order model presented the best correlation with the experimental data. Both surface absorption and intra-particle diffusion were acting during arsenic uptake, except for absorbent dosage of 0.1g, which was mainly controlled by the intra-particle diffusion.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1141 ◽  
Author(s):  
Joanna Lach

The aim of the study was to evaluate the possibility of applying commercial activated carbons currently used in water treatment plants and modified carbon at 400 and 800 °C in the atmosphere of air, water vapour and carbon dioxide to remove chloramphenicol. Adsorption kinetics was examined for solutions with pH of 2–10. Adsorption kinetics were determined for the initial concentration of chloramphenicol of 161 mg/dm3 and the adsorption isotherm was determined for the concentrations of 161 to 1615 mg/dm3. Of the analysed activated carbons (F-300, F-100, WG-12, ROW 08 Supra and Picabiol), the highest adsorption capacity was obtained for the use of Picabiol (214 mg/g), characterized by the highest specific surface area and pore volume. The pH value of the solution has little effect on the adsorption of chloramphenicol (the highest adsorption was found for pH = 10, qm = 190 mg/g, whereas the lowest—for pH = 6, qm = 208 mg/g). Modification of activated carbon WG-12 at 800 °C caused an increase in adsorption capacity from 195 mg/g (unmodified carbon) to 343 mg/g. A high correlation coefficient was found between the capacity of activated carbons and the total volume of micropores and mesopores. Among the examined adsorption kinetics equations (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion), the lowest values of the R2 correlation coefficient were obtained for the pseudo-first order equation. Other models with high correlation coefficient values described the adsorption kinetics. The adsorption results were modelled by means of the Freundlich, Langmuir, Temkin and Dubibin–Radushkevich adsorption isotherms. For all activated carbons and process conditions, the best match to the test results was obtained using the Langmuir model, whereas the lowest was found for the Dubibin–Radushkevich model.


Sign in / Sign up

Export Citation Format

Share Document